
Prediction

Sébastien Boisgérault, Mines ParisTech

1 June, 2015

Contents
Prediction Principles 1

Polynomial Prediction . 2
Optimal Linear Prediction . 3

Additional Properties of the Autocorrelation Method 6
Linear Prediction of Unlimited Order – White Noise 7

Finite Impulse Response (FIR) Filters 7
Auto-Regressive (AR) Filters . 9
Transfer Function, Stability and Frequency Response 10

Transfer Function . 10
Stability . 10
Frequency Response . 12

Voice Analysis and Synthesis 13
The TIMIT corpus . 13
Voice Analysis and Compression . 15

Short-Term Prediction . 16
Spectral Analysis . 16
Models of the Vocal Tract . 18
Pitch Analysis . 22
Long-Term Prediction . 24

Linear Prediction Coding . 24

Prediction Principles

Prediction relies on the signal past and current values to estimate its future
values. Such process relies on a given class of models, supposed to rule the
behavior of the signal whose parameters shall be identified. This step being
achieved, we may compute the prediction error or residual, the difference
between the actual signal values and the predicted values. % In the context of
data compression, and if the model used for prediction is accurate, the prediction

1

Sebastien.Boisgerault@mines-paristech.fr
http://www.mines-paristech.fr/

error has a much smaller range than the original values and therefore may be
coded more efficiently.

Polynomial Prediction

Polynomial prediction is one of the simplest fixed-parameter prediction schemes.
Given m sample values x0, x1, · · ·, xm−1, we identify the unique polynomial P
of order at most m − 1 such that

∀ n ∈ {0, 1, · · · , m − 1}, P (n) = xn

and with it, provide a prediction x̂m for the value xm:

x̂m = P (m)

The polynomial P , given by

P (n) =
m−1∑
n=0

anjn

is determined by the matrix equality
1 01 02 . . . 0n−1

1 11 12 . . . 1n−1

...
...

... . . .
...

1 (n − 1)1 (n − 1)2 . . . n − 1n−1




a0
a1
...

an−1

 =


x0
x1
...

xn−1


The matrix on the left-hand side is an invertible Vandermonde matrix, therefore
the polynomial coefficients may be obtained from the signal values x0, x1, · · ·,
xn−1 and x̂n can be computed.
The prediction error en = xn − x̂n may be computed efficiently. Consider a
signal xn whose values are stored in the NumPy array x, and let’s begin with a
polynomial prediction of order 0 or difference coding ; our prediction model
is that the signal is constant. We may compute at once all the prediction errors
en = xn − xn−1 for the signal with
e = diff(x) = [x[1] - x[0], x[2] - x[1], ...]

However, we end up with a vector with only len(x) - 1 values : e0 is undefined
and e[0] would be e1; we would have no information about the first value of
the signal x[0] in e. We therefore add x[0] as the first value of e. This is the
same as taking into account a supposedly zero value x[-1] of the signal, and
may by adding 0 to the beginning of x before applying the difference operator:
e = diff(r_[0, x])

Reconstruction of x from the residual e can be done by computing the cumula-
tive sum xn =

∑n
i=0 en:

2

x = cumsum(e)

What about first-order polynomial prediction then ? The formula for x̂n is
x̂n = xn−1 + (xn−1 − xn−2 and the corresponding residual is

en = xn − x̂n = xn − 2xn−1 + xn−2 = (xn − xn−1) − (xn−1 − xn−2).

This residual may therefore by computed as :
e_0 = diff(r_[0, x])
e = diff(r_[0, e_0])

and reconstruction is given as
e_0 = cumsum(e)
x = cumsum(e_0)

This scheme may be generalized to a polynomial prediction of arbitrary order.

Optimal Linear Prediction

Consider the following problem: given a sequence {xn}, get the best linear
approximation x̂n of xn as a linear combinations of the m previous samples:

x̂n = a1xn−1 + · · · + amxn−m.

Let’s be more precise: if the values x0, x1, · · ·, xn−1 are available, we can
predict n−m values and therefore measure the prediction error by the quadratic
criterion:

j(a) =
n−1∑
i=m

(xi − a1xi−1 + · · · + amxi−m)2

The process that produces the estimates x̂n is known as a Wiener(-Hopf)
filter. % The vectors a = (a1, · · · , am) that minimize the quadratic error are
therefore solution of

a = argminx ∥e∥2, with e = Ax − b

where

A =


xm−1 xm−2 . . . x0
xm xm−1 . . . x1
...

...
...

...
xn−2 xn−3 . . . xn−m−1

 and b =


xm

xm+1
...

xn−1


The analysis of this problem shows that there is a unique solution a = x if A is
into that is if the square matrix AtA is full-rank (m) and the solution is

a = [AtA]−1Atb

3

Indeed, the function j(x) = ∥Ax − b∥2 to minimize is quadratic in x: j : x 7→
1/2xtQx + Lx + c. The Taylor decomposition at the point a yields j(x) =
j(a)+∇j(a)t(x−a)+1/2(x−a)t∇2j(a)(x−a). Any a such that ∇j(a) = 0 (here,
with the full rank assumption, there is a unique solution) is a global minimum.
A geometrical analysis would also have worked: a solution a to the minimum
problem has to be such that for any x, the error vector e = b − Aa and Ax are
orthogonal ; this also yields the condition (). The same geometrical anaylsis
– or a direct computation – yields the error measure as by the Pythagorean
Theorem, we have ∥b∥2 = ∥Aa∥2 + ∥Aa − b∥2

∥e∥2 = ∥b∥2 − ∥Aa∥2

The full-rank assumption is not a problem in pratice: it just means that the
signal data is rich enough to discriminate a unique optimal candidate x. If that’s
not the case, instead of [AtA]−1At we could use the pseudo-inverse of A♯ of A,
defined as

A♯ = lim
ϵ→0

[AtA + ϵI]−1At

such that a = A♯b provides among the solutions x of the minimisation problem
the one with the smallest norm.
Instead of implementing ourself a solution of the minimization problem, we
provide a reference implementation of the linear prediction problem that uses
the NumPy function linalg.lstsq that solves this least-square (quadratic)
minimization problem:
def lp(signal, m):

"Wiener predictor coefficients"
signal = ravel(signal)
n = len(signal)

A = array([signal[m - arange(1, m + 1) + i] for i in range(n-m)])
b = signal[m:n]
a = linalg.lstsq(A, b)[0]

return a

Estimation of the parameter a as a solution of (+)
is called the covariance method. We preseent now a variant of this process,
called autocorrelation method, that is amenable to faster implementations
and also has more pleasant properties, such as the stability of the inverse of
error filters (see section (??)).
Consider the following change: add m zeros at the start of {xn}, add m zeros at
the end, then apply the autocorrelation method. What we are trying to achieve
is to predict ALL the values of xn (even when we don’t have all prior values)
and conversely, for symmetry reasons that will be clearer in a moment, predict
the trailing zeros from significant data as long as there is on usable sample.

4

The implementation of a linear predictor solver that support both methods is
simple:
def lp(signal, m, zero_padding=False):

"Wiener predictor coefficients"
signal = ravel(signal)

if zero_padding: # select autocorrelation method instead of covariance
signal = r_[zeros(m), signal, zeros(m)]

n = len(signal)

A = array([signal[m - arange(1, m + 1) + i] for i in range(n-m)])
b = signal[m:n]
a = linalg.lstsq(A, b)[0]

return a

Note that in the covariance methods, the new A and b are:

A =



0 0 . . . 0 0
x0 0 . . . 0 0
x1 x0 . . . 0 0
...

...
...

...
...

xn−2 xn−m−1
xn−1 xn−m

...
...

...
...

...
0 xn−1 xn−2
0 0 xn−1


and b =



x0
x1
x2
...

xn−1
0
...
0
0


Set xi = 0 if i < 0 or i ≥ n and

cj =
+∞∑

i=−∞
xixi−j

We now have

C(m) = AtA =


c0 c1 c2 . . . cm−1
c1 c0 c1 . . . cm−2
...

...
...

...
...

cm−1 cm−2 . . . c1 c0

 and Atb =


c1
c2
...

cm


The correlation matrix C(m) = AtA is is now symmetric but also Toeplitz (or
diagonal-constant) and therefore efficient algorithms to solve the least-square
problem exist. Note also that we could add MORE zeros before or after the
data and that it wouldn’t change a thing: A and b change but AtA and Atb are
the same. In this context, the set of scalare equations

[AtA]a = Atb

5

are called Wiener-Hopf equatons, Yule-Walker equations or normal equa-
tions.
So the autocorrelation method naturally fits into the “infinite signals” point
of view, strongly related to the convolution operator (see section ??). To be
more precise, consider the (causal) signal {xn} defined for ALL n (by setting
0 when not defined) and consider the signal {an} defined in the same way (in
particular, a0 = 0). Then, the (possibly) non-zero coeffs of {an} ∗ {xn} and
{xn} correspond to the following vectors:

{an} ∗ {xn} → Aa and {xn} → b

so that the minimisation problem we are trying to solve really is:

{an} = argmin ∥{xn} − {hn} ∗ {xn}∥2

among all strictly causal filters hn with hi = 0 if i > m. Or if we introduce the
prediction error filter b0 = 1 and bn = −an,

{rn} = argmin ∥{hn} ∗ {xn}∥2

among causal filters with h0 = 1 and length less or equal to m + 1. This is a
causal deconvolution problem.
Note however, the completion of the signal by 0’s even if the result is question-
able: if the real signal has values outside the window, they are probably not 0.
It does not matter much when the length of the window is big with respect to
the prediction order, but otherwise a the covariance method is probably more
accurate.

Additional Properties of the Autocorrelation Method

Let rn = (1, −a1, · · · , −am) be the coeffs of the prediction error filter. We are
going to prove that:

c0 c1 c2 . . . cm

c1 c0 c1 . . . cm−1
...

...
...

...
...

cm cm−1 . . . c1 c0




1
−a1
...

−am−1
−am

 =


∥{en}∥2

0
...
0
0


By the way, that gives us a new way to get the an: get C(m + 1)−1[1, 0, · · · , 0]t
and normalize the result w.r.t. the first coefficient (whose meaning is interesting:
the energy of the residual !). In the sequel, we denote σr = ∥{en}∥.
All the 0 of the equations are a direct consequence of AAta = Atb. The first
coeff is equal to c0 − [c1, · · · , cm] · a = c0 − (Atb) · a = c0 − b · (Aa) = ∥{xn}∥2 −
{xn} · ({an} ∗ {xn}) = {xn} · {en}. But by the orthogonality condition, this is
equal to {en} · {en} = σ2

r .

6

Linear Prediction of Unlimited Order – White Noise

Let x0, · · ·, xn−1 be a finite sequence of real values. We may extend the defini-
tion of xi for arbitrary values of the index by setting xi = 0 if i does not belong
to the original index range. Now we may try to solve the linear prediction prob-
lem of unlimited order by minimizing over all infinite sequences of prediction
coefficients ai the quadratic sum of the prediction error ei:

+∞∑
i=−∞

e2
i where ei = xi −

+∞∑
j=1

aixi−j

Any solution to this problem satisfies

∀ j > 0,
+∞∑
i=0

eiei−j = 0

The prediction error of the unlimited order linear prediction problem is not
correlated at all – it is a white noise.
Proof. Let (x ∗ y)i =

∑+∞
j=−∞ xjyi−j , ⟨x, y⟩ =

∑+∞
i=−∞ xiyi and ∥x∥ =

√
⟨x, x⟩.

We denote by L2(Z) the set of infinite sequences x such that ∥x∥ < +∞ and if
I ⊂ Z, by L2(I) the set of sequences x in L2(Z) such that xi = 0 if i ̸∈ I. Our
minimization problem may be formalized as

min
a∈A

∥x − a ∗ x∥2 with A = L2(N∗)

Let e = x − a ∗ x be the prediction error ; any solution a is a solution of ()
satisfies

∀ δ ∈ L2(N∗), ⟨δ ∗ x, e⟩ = 0
Let x̄ be the infinite sequence such that x̄i = x−i. We have ⟨δ ∗ x, e⟩ = ⟨δ, x̄ ∗ e⟩
and (x̄ ∗ e)j =

∑+∞
i=−∞ xi−jei. Therefore ∀ j > 0,

∑+∞
i=−∞ xi−jei = 0. As any

ei is a linear combination of the previous values of x, this equality yields

∀ j > 0,
+∞∑
i=0

eiei−j = 0

■

Finite Impulse Response (FIR) Filters

The Wiener-Hopf prediction that produces the sequence of estimates x̂n from
the xn or error filter that outputs en = xn − x̂n are special cases of finite
impulse response (FIR) filters : they associate to an input sequence un an
output sequence yn related by:

yn = a0un + a1un−1 + · · · + aN−1un−N+1

A core, real-time implementation for such system is given by:

7

class FIR(Filter):
def __call__(self, input):

if shape(input):
inputs = ravel(input)
return array([self(input) for input in inputs])

else:
output = self._a[0] * input + dot(self._a[1:], self.state)

if len(self.state):
self.state = r_[input, self.state[:-1]]

return output

where some features, such as the initialization and changes of a, the management
of the filter state, common between finite impulse response filters and auto-
regressive filters (see section ??) are implemented in the base class Filter. We
talk about a real-time implementation of a FIR because instances of FIR produce
the value yn as soon as un is available. To do this, they need to store a state
that contains at the time n the N − 1 past values un−1, · · ·, un−N+1 of the
input.
Consider as an example the 4-point moving average filter:

yn = 1
4

(un + un−1 + un−2 + un−3)

Such a filter may be defined and used by the following code:
>>> ma = FIR([0.25, 0.25, 0.25, 0.25])
>>> ma.state
array([0., 0., 0.])
>>> ma(1.0)
0.25
>>> ma(2.0)
0.75
>>> ma(3.0)
1.5
>>> ma(4.0)
2.5
>>> ma([5.0, 6.0, 7.0, 8.0, 9.0, 10.0])
array([3.5, 4.5, 5.5, 6.5, 7.5, 8.5])
>>> ma.state
array([10., 9., 8.])

Once the filter ma is initialized (by default with a zero state), every call to
ma shall give one or several new input values and as many output values are
produced.
Note that if we start with a zero state and input a single non-zero value before
sending a sequence of zeros, the filter will output a finite number of (possibly)
non-zero and will then output only zeros: this is actually a defining property of
finite impulse response filters.

8

>>> ma.state = [0.0, 0.0, 0.0]
>>> ma([1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
array([0.25, 0.25, 0.25, 0.25, 0. , 0. , 0. , 0. , 0.])

In the context of linear prediction, here is how the prediction coefficients a
produced by lp may be used to build the predictor filters and error filters.
>>> a = lp(x, ...)
>>> predictor = FIR(r_[0.0, a])
>>> error = FIR(r_[1.0, -a])

Auto-Regressive (AR) Filters

Autoregressive (AR) filters are – at least formally – inverses of FIR filters.
Consider the equation of an FIR error filter whose input is xn and output en

en = 1.0 · xn − a1xn−1 − · · · − amxn−m

If this equation holds for every value of n, the inverse system that has en as an
input and xn as an output is ruled by:

xn = a1xn−1 + · · · + amxn−m + en

Therefore we consider the class of autoregressive systems with inputs un and
outputs yn ruled by

yn = a1yn−1 + · · · + aN yn−N + un

A core implementation is given as
class AR(Filter):

def __call__(self, input):
if shape(input):

inputs = ravel(input)
return array([self(input) for input in inputs])

else:
output = dot(self.a, self.state) + input
self.state[-1] = output
self.state = roll(self.state, 1)
return output

The state of such an AR instance is the sequence of N previous values of yn.
The usage of the class AR is similar to FIR. For example, the filter:

yn = 0.5 · yn−1 + un

may be defined and used by

9

>>> ar = AR([0.5])
>>> ar.state = [1.0]
>>> ar(0.0)
0.5
>>> ar(0.0)
0.25
>>> ar(0.0)
0.125
>>> ar(0.0)
0.0625
>>> ar([1.0, 1.0, 1.0, 1.0])
array([1.03125 , 1.515625 , 1.7578125 , 1.87890625])
>>> ar.state
array([1.87890625])

Transfer Function, Stability and Frequency Response

Transfer Function

The transfer function of a (linear, time-invariant, single-input single output)
system is a (partial) function H : C → C defined in the following way: given
z ∈ C and a complex-valued input signal un = uzn the corresponding output
having the structure yn = yzn, if it exists, satisfies:

y = H(z)u

For example, the FIR filter defined by the equation () has the transfer function

H(z) = a0 + a1z−1 + · · · + aN−1z−N+1

and the AR filter defined by the equation () has the transfer function

H(z) = 1
1 − a1z−1 − · · · − aN z−N

Stability

A filter is (input-output) stable if all bounded input signals result in bounded
outputs. Stability of filters whose transfer function is rational – such as FIR
and AR filters – is conditioned by the location of their poles, the roots of their
transfer functions. Precisely, such a filter is stable if and only if all its poles
have a negative real part.
The classes FIR and AR have a method that return their poles ; its implementa-
tion is based on the numpy.lib.polynomial roots function that computes the
roots of a polynomial.

10

For FIR filters, the situation is simple: as

H(z) = a0 + a1z−1 + · · · + aN−1z−N+1 = a0zN−1 + a1zN−2 + · · · + aN−1

zN−1 ,

all N poles are 0 and therefore all FIR filters are stables.
class FIR(Filter):

....
def poles(self):

return zeros(len(self.a))

For AR filters,

H(z) = 1
1 − a1z−1 − · · · − aN z−N

= zN

zN − a1zN−1 − · · · − aN

and therefore the poles are the solution of the polynomial P (z) = zN −a1zN−1−
· · · − aN .
class AR(Filter):

...
def poles(self):

return roots(r_[1.0, -self.a])

As an example, consider the two auto-regressive filters ruled by:

yn = 0.5 · yn−1 − 0.5 · yn−2 + un and yn = yn−1 + yn−2 + yn−3 + yn−4 + un

The first one is stable but the second one is unstable:
>>> ar = AR([0.5, -0.5])
>>> ar.poles()
array([0.25+0.66143783j, 0.25-0.66143783j])
>>> max(abs(pole) for pole in ar.poles())
0.70710678118654757
>>> ar = AR([1.0])
>>> ar = AR([1.0, 1.0, 1.0, 1.0])
>>> ar.poles()
array([1.92756198+0.j , -0.77480411+0.j ,

-0.07637893+0.81470365j, -0.07637893-0.81470365j])
>>> max(abs(pole) for pole in ar.poles())
1.9275619754829254

As a matter of fact, we will deal in the next sections with AR filters that are
inverses of FIR prediction error filters provided by linear prediction. Such filters
are always stable when the autocorrelation method is used but may be unstable
with the covariance method.

11

Frequency Response

When a filter is stable, it makes sense to ask what output corresponds to a
cosine input with frequency f , amplitude A and phase ϕ. If the input sequence
is scheduled to produce a new value every ∆t seconds, we have

un = A cos 2πfn∆t + ϕ

and therefore

un = A/2 · eiϕ(ei2πf∆t)n + A/2e−iϕ · (e−i2πf∆t)n.

By the definition of the transfer function, we have the corresponding output yn:

yn = A/2 · eiϕH(2πf∆t)(ei2πf∆t)n + A/2 · e−iϕH(−2πf∆t)(e−i2πf∆t)n

= Re
[
H(2πf∆t)Aeiϕei2πf∆tn+ϕ

]
So if we consider the polar decomposition

H(2πf∆t)Aeiϕ = A′eiϕ′

then the cosine output of the filter is

yn = A′ cos 2πfn∆t + ϕ′

The function
f 7→ H(2πf∆t)

that relates input and ouput amplitude and phase at the frequency f is called
the filter {frequency response}. We often consider separately

|H(2πf∆t)| and ∠H(2πf∆t),

the frequency response gain and phase.
The implementation of transfer functions for FIR and AR filters relies on the
computation of signal spectrum or Fourier transform, provided by the function
F of the spectrum module, see section ??.
from spectrum import F

class FIR(Filter):
...
def __F__(self, **kwargs):

dt = kwargs.get("dt") or 1.0
return F(self.a / dt, dt=dt)

class AR(Filter):

12

...
def __F__(self, **kwargs):

dt = kwargs.get("dt") or 1.0
FIR_spectrum = F(FIR(a=r_[1.0, -self.a]), dt=dt)
def AR_spectrum(f):

return 1.0 / FIR_spectrum(f)
return AR_spectrum

The function F is generally used to get the frequential representation of and
object, signal or filter, or something else. Apart from signals, for which we
directly compute the spectrum, the objects are supposed to know what their
spectral representation is and encode this information in the special method
__F__ ; for filters, we return the frequency response. Those methods being
defined for FIR and AR filters, we may use them like that:
>>> ma = FIR([0.5, 0.5])
>>> tf = F(ma, dt=1.0)
>>> tf([0.0, 0.1, 0.2, 0.3, 0.4, 0.5])
array([1.0000000 +0.00000000e+00j, 0.9045085 -2.93892626e-01j,

0.6545085 -4.75528258e-01j, 0.3454915 -4.75528258e-01j,
0.0954915 -2.93892626e-01j, 0.0000000 -6.12303177e-17j])

Voice Analysis and Synthesis

The TIMIT corpus

The TIMIT corpus is a collection of read speech data that includes for each ut-
terance 16-bit 16 kHz waveforms as well as time-aligned orthographic, phonetic
and word transcriptions. It was designed – as a joint effort among the Mas-
sachusetts Institute of Technology (MIT), SRI International (SRI) and Texas
Instruments, Inc. (TI) – for acoustic-phonetic studies and for the development
and evaluation of automatic speech recognition systems.
The Python library NLTK – for Natural Language Toolkit – is an open source
collection of modules that provides linguistic data and documentation for
research and development in natural language processing and text analytics
(http://www.nltk.org/). As a part of the distribution, is a small sample of
the TIMIT corpus is made available.
The samples from TIMIT are designated by ids whose list is given by the
utteranceids method:
>>> import nltk
>>> timit = nltk.corpus.timit
>>> timit.utteranceids()
['dr1-fvmh0/sa1', 'dr1-fvmh0/sa2', 'dr1-fvmh0/si1466', 'dr1-fvmh0/si2096',
...

13

http://www.nltk.org/

0 10000 20000 30000 40000 50000
sample index

0

sh
e

ha
d

yo
ur

da
rk

su
it

in

gr
ea

sy

w
as

h

w
at

er

al
l

ye
ar

Figure 1: Waveform of the TIMIT utterance 'dr1-fvmh0/sa1' and display of
its segmentation into words.

'dr8-mbcg0/sx237', 'dr8-mbcg0/sx327', 'dr8-mbcg0/sx417', 'dr8-mbcg0/sx57']
>>> uid = timit.utteranceids()[0]
'dr1-fvmh0/sa1'

The corpus provides a detailled decomposition of the utterances in words as well
as phones1 – speech segments that have distinct properties. Those decomposi-
tions are timed, the numbers being sample indices.
>>> timit.words(uid)
['she', 'had', 'your', 'dark', 'suit', 'in', 'greasy', 'wash', 'water', 'all', 'year']
>>> timit.word_times(uid)
[('she', 7812, 10610), ('had', 10610, 14496), ('your', 14496, 15791),
('dark', 15791, 20720), ('suit', 20720, 25647), ('in', 25647, 26906),
('greasy', 26906, 32668), ('wash', 32668, 37890), ('water', 38531, 42417),
('all', 43091, 46052), ('year', 46052, 50522)]
>>> timit.transcription_dict()["she"]
['sh', 'iy1']
>>> timit.phones(uid)
['h#', 'sh', 'iy', 'hv', 'ae', 'dcl', 'y', 'ix', 'dcl', 'd', 'aa', 'kcl', 's',
'ux', 'tcl', 'en', 'gcl', 'g', 'r', 'iy', 's', 'iy', 'w', 'aa', 'sh', 'epi',
'w', 'aa', 'dx', 'ax', 'q', 'ao', 'l', 'y', 'ih', 'ax', 'h#']
>>> timit.phone_times(uid)
[('h#', 0, 7812), ('sh', 7812, 9507), ('iy', 9507, 10610), ('hv', 10610, 11697),
...
('ih', 47848, 49561), ('ax', 49561, 50522), ('h#', 50522, 54682)]

The audiodata method, combined with the bitstream module, provide the
waveform as a single-dimensional NumPy array data:
>>> str_data = timit.audiodata(uid)

1not to be confused with **phonemes**, set of phones that are cognitively equivalent
(<http://en.wikipedia.org/wiki/Phoneme>).

14

>>> data = BitStream(str_data).read(int16, inf).newbyteorder()

0 5000 10000 15000 20000
sample index

-0.4

-0.2

0.0

0.2

0.4

sa
m

pl
e

va
lu

e
in

[−
1
,+

1
]

Figure 2:

2500 3000 3500 4000 4500 5000

sample index

−0.4

−0.2

0.0

0.2

0.4

sa
m

pl
e

va
lu

e
in

[−
1
,+

1
]

Figure 3:

Voice Analysis and Compression

The knowledge that the audio data that we are willing to compress is a voice
signal can go a long way in the reduction of bit rate. Consider for example the
G.711 PCM speech codec: defined in 1972, it is based on a 8 kHz sampling time
and a quite generic method of non-linear quantization (8-bit µ-law or A-law).
It achieves a data rate of 64 kb/s. A more specific technology developed in the
early 90’s, and based on linear prediction, the full-rate GSM, has a 13 kbps bit
rate. More recent efforts in this direction have achieved a quality similar to the
G.711 codec at 6.4 kbps, or with a lesser quality go as low 2.4 kbps (see [?]).
In the sequel, we’ll assume that the data we consider is sampled at 8 khz ; this is
a standard assumption in fixed telephony that takes into account the fact that
most voice audio content is in the 300-3400 Hz band. Applications that require

15

4400 4420 4440 4460 4480 4500 4520 4540

sample index

−0.4

−0.2

0.0

0.2

0.4
sa

m
pl

e
va

lu
e

in
[−

1
,+

1
]

Figure 4: Voice patterns. A voice signal sampled at 8 kHz displays complex
and non-stationary patterns on a scale of 2.5 s (top). When we zoom to a 300
ms scale (middle), and then further to a 20 ms scale (bottom), we see that
locally, the signal appears to be almost periodic.

more accurate descriptions of voice data may use wideband and use a 16 kHz
sampling instead for a higher accuracy – all the audio data in the TIMIT data
base uses this sampling frequency for example.

Short-Term Prediction

Beyond the selection of an appropriate sampling rate, the key to achieve signif-
icant compression rate is to recognize that voice has a local – say on a 20 ms
frame – stationary structure that can therefore be described by a small numbers
of parameters. This property is clearly visible in the figure ??.
The figure ?? displays two 20-ms voice fragments sampled at 8 kHz and the
corresponding residuals after a prediction of order . The first one clearly has
achived its goal: the residual appears to be left without structure and is a good
approximation of a white noise. For those kind of data, the short-term prediction
provides a simple production model: an AR synthesis filter whose input is a
white noise. For the second type of signals, for which the residual is clearly
not random, we need a more complex production model that complements the
short-term prediction with a long term prediction (see sections ?? and {??}).

Spectral Analysis

The spectrum of a voice segment x(t) may be estimated classically, with the
formula

x(f) = ∆t
∑

t∈Z∆t

x(t) exp(−i2πft),

16

0 20 40 60 80 100 120 140

sample index

−0.2

−0.1

0.0

0.1

0.2

sa
m

pl
e

va
lu

e

Figure 5:

0 20 40 60 80 100 120 140
sample index

-0.2

-0.1

0.0

0.1

0.2

sa
m

pl
e

va
lu

e

Figure 6: short-term prediction error. top: a frame of 160 samples within
a 8 kHz signal (grey) and the corresponding prediction error (black) for a linear
prediction of order 16 (covariance method). The residual show little remaining
structure. bottom: the prediction error (black) of the voice signal (grey) still
exhibits a periodic structure, made of regularly spaced spikes, characteristic of
voiced segments.

17

but there is another way: if we have performed a successful predicton of the
data that leads to a synthesis filter with frequency response

1
1 − A(f)

,

the prediction error should be almost white and its spectrum e(f) should be
approximately constant. As the signal data x(t) is related to e(t) by

x(f) = 1
1 − A(f)

e(f),

the frequency response of the synthesis filter provides a (parametric) estimate
of the signal spectrum. Both kind of methods are illustrated in figure ??.

0 500 1000 1500 2000 2500 3000 3500 4000

frequency f (Hz)

10−8

10−7

10−6

10−5

10−4

10−3

10−2

sp
ec

tr
um

am
pl

it
ud

e

Figure 7: Spectral View. spectrum of the signal of the figure ??, estimated
by non-parametric (fft) method and by the frequency response of the synthesis
filter. The spectrum of the prediction error is also displayed.

Models of the Vocal Tract

Continuous Modelling. % A simple model of vocal tract is the horn: a tube
whose cross-sectional area A is a function of the position x in the tube. Let ϕ
denote the air flow, positive by convention if the are travel towards the right, p
the pressure, ρ the air density and K its bulk modulus.
Newton’s second law of motion yields

d

dt
ρϕ = −dpA

dx
.

We approximate this equation by:

ρ
∂ϕ

∂t
= −A

∂p

∂x

18

Figure 8: the vocal tract: horn model.

On the other hand, as the bulk modulus relates changes in the pressure p and
in the volume by $ K dv + v dp = 0, $ we also have

K
∂ϕ

∂x
= −A

∂p

∂t

The combination of equations () and () yield Webster’s Equation

1
c2

∂2p

∂t2 − 1
A

dA

dx

∂p

∂x
− ∂2p

∂x2 = 0

where c, the wave velocity in the media is given by:

c =

√
K

ρ

Discrete Modelling. An common simplification of the horn model is to trade
the continuous change in the cross-sectional area A(x) for a tube made of a finite
number of cylindrical sections of equal length L whose cross-sectional area Ak

is a function of the section index k. Consider the pressure pk in the section k
as the superposition of right and left-travelling waves $ p_k(t,x) = p_kˆ+(x -
ct) - p_kˆ-(x + ct). $
Stating that the pressure is continuous at the section boundary x leads to the
system of equations

p+
k+1(x − ct) = (1 − r+

k)p+
k (x − ct) + r−

k+1p−
k+1(x + ct)

p−
k (x + ct) = (1 − r−

k+1)p−
k+1(x + ct) + r+

k p+
k (x − ct)

19

Figure 9: the vocal tract: discrete tube model.

where r+
k and r−

k+1 are reflection coefficients. The air flow

ϕk(t, x) = ϕ+
k (x − ct) − ϕ−

k (x + ct)

is also continuous at the section boundary. A Fourier decomposition of the
waves and the use of equation () show that it is related to the pressure by

p±
k

ϕ±
k

= ±Zk

where Zk is the impedance, given in each section by

Zk = cρ

Ak
=

√
Kρ

Ak

The continuity of the air flow at the position x provides for all time the equations

Akp+
k (x − ct) + Akp−

k (x + ct) = Ak+1p+
k+1(x − ct) + Ak+1p−

k+1(x + ct)

which, coupled with the system of equations () leads to

r+
k = −r−

k+1 = Ak+1 − Ak

Ak+1 + Ak
.

Ladder and Lattice Filters. In a given tube section, the pressure waves
travel unchanged at the speed c. Given that the tube section is of length L, the

20

time needed to go from one boundary of the section to the other is L/c. As a
consequence, the transformation between the values of p+ and p− from the left
of one section boundary to the left of the next section boundary on the right
may be modelled as the junction depicted on the left of figure ??.
Now, if want to follow what happens to the pressure wave p+ travelling to the
right, we may introduce a variable p̃+ that compensates for the delay in the
wave propagation as well as the attenuation (or amplification) at the sections
boundary. We apply the same treatment to p̃− so that

p̃±
k+1(t) = 1

1 − rk
p±

k+1(t + L/c)

Straightforward computations show that the equations satisfied by the corre-
sponding variables are described by the lattice junction depicted on the right of
the figure ??.

Figure 10:

**Lattice Filters in Linear Predictive Coding. When it comes to the im-
plementation of synthesis filters that model the vocal tract, lattice
filters – implemented as a serial connexions of lattice junctions – are
often preferred to classic (register-based) implementations of the au-
toregressive filters. Their parameters – the reflection coefficients –
are easy to interpret and also, when the synthesis filter is determined
by the autocorrelation method, the Levison-Durbin or Schur** algorithm
may be used to compute them directly instead of the linear regression coeffi-
cients ai. Moreover, these algorithms are recursive and have
a O(m2) complexity where m is the predicton order, better than the typical
O(m3) of the least-square resolution needed to compute the ai.
Finally, lattice filters are stable as long as the reflexion coefficients are between
−1 and 1. As a consequence, we can easily perform a quantization of these
coefficients that will preserve the stability of the synthesis filter. A classic choice

21

Figure 11: Kelly-Lochbaum junction: ladder form (left) and lattice form (right)

is the logarithmic quantization of the area-ratio Ak+1/Ak, that is, because of
the equation (), the uniform quantization of

LARk = log
1 + r+

k

1 − r+
k

.

Pitch Analysis

The prediction error of the voice fragment displayed at the bottom of figure ??
still displays some structure : a white noise plus a quasi-periodic sequence of
impulses. As the short-term prediction has inverted the vocal tract filter, what
we are looking at is actually the sequence of glottal pulses. The duration
between two pulses is the voice pitch period, ts inverse is the speech funda-
mental frequency. When this periodic structure is present after short-term
predicton, the speech fragment is said to be voiced and when it’s not, it is
unvoiced.
The simplest kind voiced/unvoiced classifier is based on the autocorrelation of
the short-term prediction error (see for example [?]). In a given data frame, we
select a subframe, typically at the end, and compare it with all the subframes of
equal size within the frame by computing the normalized scalar product between
the two vectors. Values of (the modulus of) the correlation near 1 correspond
to two subframes that are – up to a gain – almost equal.
def ACF(data, frame_length):

frame = data[-frame_length:]
frame = frame / norm(frame)
past_length = len(data) - frame_length
correl = zeros(past_length + 1)
for offset, _ in enumerate(correl):

22

past_frame = data[past_length-offset:past_length-offset+frame_length]
past_frame = past_frame / norm(past_frame)
correl[offset] = dot(past_frame, frame)

return correl

0 20 40 60 80 100 120

offset

0.0

0.5

1.0

co
rr

el
at

io
n

Figure 12:

0 20 40 60 80 100 120

offset

0.0

0.5

1.0

co
rr

el
at

io
n

Figure 13: normalized autocorrelation of the prediction errors for the speech
fragment of figure ?? with a reference window of 32 samples. The top graph
corresponds to an unvoiced signal and the bottom one to a voiced signal with a
pitch period of 36 samples.

These kind of method will therefore rely on the selection of autocorrelation
threshold to distinguish between voiced and unvoiced signals and localization of
autocorrelation maxima to estimate the pitch period. Care must be taken not
to select a multiple of the pitch period instead.

23

Long-Term Prediction

Given a reference subframe y and a subframe x offsetted by the pitch period p
we can compute the best linear approximation of y in terms of x, that is, the
gain k, solution of

k = argmin κ∥y − κx∥2.

It is given by

k = xty

∥x∥2

Once again, what we have done is a prediction, but a long-term prediction,
applied to the residual of the short-term prediction. If xn denotes the error of
the short-term prediction, the error en after the additional long-term prediction
is given by

xn = kxn−p + en

This equation models an auto-regressive synthesis filter whose diagram is given
in figure ??

Figure 14: LTP synthesis filter

Linear Prediction Coding

The use of short-term and long-term linear prediction method may be used in
several ways to compress voice information. The algorithms that follow this
path are generally referred to as Linear Predictive Coding (LPC). “Pure”
LPC algorithms encode the prediction parameters and the residual power but
do not keep any extra information on the prediction residual ; this approach is
consistent with the belief that a good prediction produces a residual which is
a white noise. The voice is reconstructed by the injection of a synthetic white
noise into the synthesis filter.
Adaptative Predictive Coding (APC) is also called Residual-Excited
Linear Prediction (RELP) : in order to have a reconstructed voice with

24

parameter estimation

stp ltp
Analysis Filter

Figure 15:

stpltp
Synthesis Filter

Figure 16: LPC analysis and synthesis filters diagram}

25

Analysis power

white
noise Synthesis

Figure 17: “Pure” LPC analysis and synthesis diagrams

Analysis

Synthesis

Figure 18: APC/REPL analysis and synthesis diagrams

26

a higher quality, the residual information is not discarded but quantized and
transmitted along with the prediction parameters.
This kind of approach has a major drawback: the quantization typically aims at
the minimization of the quantization error of the residual, a quantity that has
little to do with the error induced on the voice itself. The Code-Excited Lin-
ear Prediction (CELP) approach solves that issue by discarding the residual
entirely and by trying instead several excitation signals among a finite code-
book, apply to them the synthesis filter, and look for the output that matches
the more closely the voice data.

Analysis Synthesis

codebook

match

Synthesiscodebook

Figure 19: CELP analysis and synthesis diagrams

27

	Prediction Principles
	Polynomial Prediction
	Optimal Linear Prediction
	Additional Properties of the Autocorrelation Method
	Linear Prediction of Unlimited Order – White Noise

	Finite Impulse Response (FIR) Filters
	Auto-Regressive (AR) Filters
	Transfer Function, Stability and Frequency Response
	Transfer Function
	Stability
	Frequency Response

	Voice Analysis and Synthesis
	The TIMIT corpus
	Voice Analysis and Compression
	Short-Term Prediction
	Spectral Analysis
	Models of the Vocal Tract
	Pitch Analysis
	Long-Term Prediction

	Linear Prediction Coding

