Quantization

Sébastien Boisgérault, Mines ParisTech

February 22, 2017

Contents
Principles of Scalar Quantization 1
Quantizers 1
Example — Integer Rounding 3
Uniform Quantization 5
Quantization of Random Variables 7
Implementation of Non-Uniform Quantizers 7
Logarithmic Quantization 10
The p-law Quantizer 10
IEEET754 Floating-Point Numbers and A-law 12
Signal-to-Noise Ratio 13
Computation of the signal-to-noise ratio 13
Maximization of the SNR 14

Quantization is a process that maps a continous or discrete set of values into
approximations that belong to a smaller set. Quantization is a lossy: some
information about the original data is lost in the process. The key to a successful
quantization is therefore the selection of an error criterion — such as entropy
and signal-to-noise ratio — and the development of optimal quantizers for this
criterion.

Principles of Scalar Quantization

Quantizers

A scalar quantizer [-] is an idempotent mapping from R to a countable subset
of R:

H[z], z € R} < |N| and Va € R, [[z]] = [z]

Sebastien.Boisgerault@mines-paristech.fr
http://www.mines-paristech.fr/

1F L.]
original number x

\

I \
quantized number [x]

Figure 1: quantization of a time-varying value by a 4-bit midtread uniform
quantization on [—1.0,1.0]

This definition should be taken with a grain of salt as variants of the real line
are often used, including the extended real line R U {—o00, +00}, the real line
with signed zeros RU{0~,07}, the real line plus the undefined symbol L, or a
combination thereof.

The countability assumption is what makes the quantizer useful as an attempt
to approximate a continous value by a discrete set that can be encoded as an
integer. A quantizer is meant to be split into a forward and inverse quantizer:
the forward quantizer builds from z an integer code that refers to [x] without
ambiguity and the inverse quantizer builds the approximation [z] back from the
code.

Formally, a forward quantizer for [-] is a mapping i[-] : R — Z such that
[x] = [y] implies i[z] = i[y]. Because of this property, i[-] may be factored into
i[-] =1io][-] where

i:mgl-] — Z.

The notation for the forward quantizer is therefore consistent with the use as
flz] as a shortcut for f([x]). The associated inverse quantizer, denoted i~!, is
a left inverse of i: a mapping whose domain is a subset of Z that contains rngi
and such that

Ve eR, (i7'oi)x] = [z]

The first step of this quantizer composition partitions the real line into the
family of sets (I,,), with
I, ={x € R, i[z] =n}, n € rngi

The second step associates to any set into this partition a unique representative
element. In every practical case we will encounter, the sets I,, are — possibly
unbounded — intervals, either open, half-open or closed. In this context, we

associate to x the decision values [z]~ and [z]T to be

[2]” =inf{y € R, [z] = [y]} and [z]" =sup{y € R, [2] = [y]}

and the step of the quantization at point x is

Example — Integer Rounding

The floor function | -] is a scalar quantizer that maps a real number to the
largest previous integer:

VzeR, |z|€Z and |z] <z <|z]+1

A natural forward quantizer for |- | is .. itself ! The identity n — n is the
corresponding inverse mapping. This quantizer partitions the real-line into the
half-open intervals I,, = [n,n + 1) for any i € Z.

The floor function of NumPy is an finite-precision implementation of this func-
tion. Its argument and return value are (arrays of) 64-bits floating-point num-
bers.

To obtain a (forward) quantizer with a finite range indexable on 32 bits, we may
modify the initial quantizer specification so that the data outside of the range
[-231 231 — 1] - the range of 32-bit signed integers — is clipped:

—231 if » < 231
|z]s2 =23 -1 if 2 >23 -1
|z] otherwise.

Given those modifications, a suitable finite implementation of the forward and
inverse quantizers is the following code/decode pair:

from numpy import *

def encode(x):
n = floor(x)
n = clip(n, -2%x31, 2%*31 - 1)
return int32(n)

def decode(n):
return float64(n)

def quantize(x):
return decode(encode(x))

The step function A of this quantization is defined by:

+oo if < =231 41
Az) = 1if -2 +1<a<23—1
4oo if 21 —1<g

Other rounding functions may serve as the basis for similar schemes: the ceiling
function [-] (NumPy function ceil) defined by:

Ve eR, [z] €Z and [z] —1<z < [z]

Instead of selecting the lower or upper integer approximation of z we may also
select the nearest:

Ve eR, |z —[z]] =min{|z —n|, n € Z}

The value [z] is not defined by this relation when = n + 1/2, n being an
integer. The NumPy function round_ rounds for example such real number to
the nearest even integer.

This example suggests a general interface for quantizers. Such objects would
provide an encode method for the forward quantization, a decode method for
the inverse quantization and would be callable so that quantizer(x) would ap-
ply both steps to the data x. Such objects could inherit the following Quantizer
base class:

class Quantizer(object):
"Quantizers Base Class."
def encode(self, data):
raise NotImplementedError("undefined forward quantizer")

def decode(self, data):
raise NotImplementedError("undefined inverse quantizer")

def __call__(self, data):
return self.decode(self.encode(data))
We can then rewrite the above integer approximation quantizer as:

class RoundingQuantizer (Quantizer):
def __init__(self, rounding=floor, integer_type=int32):
self.rounding = rounding
self.integer_type

def encode(self, x):

x = array(x)
n = self.rounding(x)
n = clip(n, -2*%*31, 2*x31 - 1)

return n.astype(self.integer_type)

def decode(self, n):
n = array(n)
return n.astype(float64)

rounding_quantizer = RoundingQuantizer()

Note that this version of the quantizer is also vectorized: several values grouped
in a NumPy array may be used as arguments to encode and decode. This
is an implicit requirement that we expect all quantizer classes to follow for
convenience.

Uniform Quantization

A quantizer is uniform in an interval with lower bound a and higher bound b if
its step function is constant in the interval. The size of the step is then directly
connected to the width of the interval and the number N of distinct values of
[] by

The final option that characterizes the quantizer is the choice of the base round-
ing function. A reference implementation is then given by:

class Uniform(Quantizer):
def __init__(self, low=0.0, high=1.0, N=2%*8, rounding=round_):
self.low = float(low)
self.high = float(high)
self N = N
self.delta = (high - low) / self.N
self.rounding = rounding

def encode(self, data):
low, high, delta = self.low, self.high, self.delta
data = clip(data, low + delta/2.0, high - delta/2)
flints = self.rounding((data - low) / delta - 0.5)
return array(flints, dtype=long)

def decode(self, i):
return self.low + (i + 0.5) * self.delta

Note that if the default value of N is selected — or more generally any even value
— [0] # 0: the approximation error for 0 is not zero. When this property may
be an issues, odd values of N may be selected — for example 28 — 1 so that 0
is correctly approximated ; such a quantizer is called a midtread quantizer —
opposed to the original midrise quantizer.

16 I I I I I

il G
| RN
Sk i H

0.00 0.25 0.50 0.75 1.00

Figure 2: 4-bit uniform encoder on (0,1): forward quantizer

1.00—;—1'-‘-1-(n)-§ -------- ey]
0.75—;- ------- + i
0.50—2- ------- . + _
0.25—; ------- SRR i

0,00 ¥t

Figure 3: 4-bit uniform decoder on (0, 1): inverse quantizer

Quantization of Random Variables

Consider a random variable X with values x € R and a density of probability
p(z). For any [z], we may consider the event [X] = [z] with probability

PXI=bh= [= [py

If the density p is constant on every interval associated to the quantization, this
equation may be simplified into:

P([X] = [z]) = p(x) x A(z)

More generally, if the quantizer values [z] are dense enough — we say that the
high resolution assumption is satisfied — then this relation holds approxi-
mately.

The entropy attached to this collection of events is maximal when every event
is equally likely, that is, under this approximation, when the step A(x) is pro-
portional to the inverse of p(x)

Implementation of Non-Uniform Quantizers

Non-uniform quantizers may be — at least conceptually — simply generated from
uniform quantizers and non-linear transformations. If [-] denotes a uniform
quantizer and f is an increasing mapping, the function [-]; defined by the
equation
2]y = (f o]0 f)(z)

and displayed in figure 77 is a nonlinear quantizer. The function f is called the
characteristic function of the quantizer. Depending on the selected range for
the uniform quantizer, it is determined up to an affine transformation.

e e e e R

Figure 4: Nonlinear quantizer implementation

Note that if f is linear or affine, that is f(z) = ax + b, the quantizer [-] is still
uniform — that’s a reason why uniform quantizers are sometimes called linear
quantizers.

Let A be the step of the uniform quantizer et let’s determine what quantization
step Ay (z) is attached to this scheme.

For every value of z, the decision values attached to y = f(z) by the uniform
quantizer are [y]~ and [y]*. Hence, the decision values for z and the non-linear
quantization are

(2] = 1 (w]7) and [a]} = F7H([y]7)

and if the high resolution assumption is satisfied the step Af(x) is :

_ _ _ _ _ A
Ag(x) = 1™ +2) =) = (Y (f@)A =)
something that is remembered as
1
A -
1)
The proportionaly constant may be easily recovered by noting that when f(x) =
z, [-]f = [-] and therefore A(xz) = A. If we impose moreover f(0) = 0, we find
T o ds
x) x —

If the quantizer is to maximize the entropy for the random variable X with
density p(z) we obtain

f(a) / " ply) dy

Example
Let’s consider the digital audio signal displayed in figure ?7.

The uniform quantization on (—1,1) with step A = 107! is dense enough so
that the associated histogram may be considered as a continuous function of
the parameter . We observe in figure 7?7 that this partition generates — for a
large range of values of x — a counting measure n(x) of a few thousands. The
ratio n(x)/n where n is the total number of samples should therefore generate
a good approximation of the density of the signal, considered as a sequence of
independent and identically distributed values.

The logarithm of the histogram is similar to a function of the type —alx|+b, a >
0 (cf fig. ??). We therefore select p(z) o« exp(—alz|). The optimal quantization
— for the entropy criterion — and the corresponding characteristic function f such
that f(0) = 0 are therefore given by:

Ax) o el and f(z) o sign (x)(1 — e—a|a;\)

1.0

30000

25000

20000

15000

10000

5000

105 E

103
102
10!

100

10t |

0 20000 40000 60000 80000 100000 120000 140000 160000
Figure 5: Around 20 seconds of audio data

T T

1 1
~1.0 0.5 0.0 0.5 1.0

Figure 6: Audio Data Histogram

T T T

| |

1.0 0.5 0.0 0.5 1.0

10—t

Figure 7: Log plot of the audio data histogram

Logarithmic Quantization

We consider in this section several related quantizers whose characteristic func-
tion is — roughly speaking — the logarithm of their argument.

The p-law Quantizer

Consider the probability law

1

p(x) < | 1+ plz|/A
0 otherwise.

if |z| < A,

The threshold A is necessary as otherwise the right-hand side of the equation
would not be summable. The parameter a controls directly the relative proba-
bility of low and high amplitude values as p(+A)/p(0) = 1/(1+ w). In the limit
case = 0, we end up with a uniform probability distribution on [—A, A].

The optimal quantizer for the entropy criterion satisfies () and therefore the
characteristic function f such that f(0) = 0 satisfies

f(x) x sign (z) In (1 + u%) .

If we limit the range of the quantizer to [—1,1] (we set A = 1) and enforce the
constraint f([—1,1]) = [-1, 1], we end up with

log (1 + plz|)

() = sign () S

This quantization scheme is called p-law and is for example used in the
NeXT/Sun AU audio file format (files with extension .au or .snd). The actual
implementation of the law, specified in the ITU-T G.711 standard — differs
slightly from the theoretical formulas. A reference implementation is given in
the code below:

class MulLaw(Quantizer):
nmnn

Mu-law quantizer

scale = 32768

iscale = 1.0 / scale

bias = 132

clip = 32635

etab = array ([0, 132, 396, 924, 1980, 4092, 8316, 16764])
@staticmethod

10

mulaw

def

def

def

sign(data):

Sign function such that sign(+0) = 1 and sign(-0) = -1
data = array(data, dtype=float)

s = numpy_sign(data)

i = where(s==0) [0]

s[i] = numpy_sign(1.0 / datal[il)

return s

encode(self, data):

data = array(data)

s = Mulaw.scale * data

s = minimum(abs(s), Mulaw.clip)
[f,e] = frexp(s + Mulaw.bias)

step = floor(32xf) - 16 # 4 bits

chord = e - 8 # 3 bits

sgn = (Mulaw.sign(data) == 1) # 1 bit

mu = 16 * chord + step # 7-bit coding

mu = 127 - mu # bits inversion

mu = 128 * sgn + mu # final 8-bit coding

return array(mu, dtype=uint8)

decode(self, i):

i = array(i)

i=265-1

sgn = i > 127

e = array(floor(i / 16.0) - 8 * sgn + 1, dtype=uint8)
f=17 16

data = ldexp(f, e + 2)

e = MuLaw.etab[e-1]

data = MuLaw.iscale * (1 - 2 * sgn) * (e + data)

return data

MuLaw ()

Note that this code is applied to values between —1 and 1 and uses 8 bits. The
most significant bit encodes the sign; the amplitude of the signal is coded by
the 7 remaining bits. The effective value of p is approximately 250 but instead
of using the expression log(1 + p|z|), we prefer a piecewise affine approximation
of it (see fig ??). The values [z] are then all multiples of 273 which limits

11

the additional quantization error when the original signal is initially encoded
with a uniform law using 14 bits or more. To ease the error correction when
transmitted the bits other than the sign bit are finally inverted.

1.00
0.75
0.50
0.25
0.00
—0.25
—0.50
—0.75
—1.00

256 ¢ ! ! ! !

U | R RRRRTE R b PR :
240 |- b RRRRRRRRRRRE e AEEERRRRRREE =
232 | e R REEIEE R RRRIREE R .
224 b SR A AR s .
216 |- P Tk b R RRREEE =
208 oo S N STTTTIa TN .
200 |- P S RREEIEE R e

192 | | | |
0.00 0.01 0.02 0.03 0.04 0.05

IEEE754 Floating-Point Numbers and A-law

All scientific computing applications use implicitely a quantizer: the quantizer
that represents approximation of real numbers in the floating-point arithmetic.
The description of two types of numbers — single and double (or rather, single
and double-precision numbers) — is detailled in the IEEE 754 standard. In both
cases, 1 bit is allocated to code the sign of the number, m bits for the exponent
part and n bits for the fraction part,

se{0,1}, ec{0,---,2m —1}, fe{0,---,2" — 1}

consequently any real number is represented by an integer in {0,--- ,2m+n+1}
according to:

n=sx2"t" tex 2"+ feio,--,2m T

The single type is defined by (m,n) = (8,23) and the double type by (m,n) =
(11,52) ; they are respectively coded on 32 and 64 bits.

12

We define
ep=2""1t—-1

so that the value of the actual exponent e—eg range (almost symmetrically) from
2m=1 to —2m~1 4 1. The inverse quantizer attached to the standard floating
point number representation is defined as follows: for an integer n, [z] = i~*(n)
is given by

NaN ife=2"—1and f#0
B (~1)%cc ife=2"—1and f=0
=1 s 4 /an) x2eme i 0<e<om 1
(—1)5(f/2m) x 210 if e=0

The structure of theses inverse quantizers are displayed in the figure ?7; they
are piecewise affine approximation of an exponential with a base of 2, except
in the range e = 0 (the so-called denormalized numbers) where the graph is
linear.

[graph of the inverse quantizer for a floating point representation such that
(m,n) = (4,3)] (images/float.pdf)

The A-law is a variant of the p-law that has a structure similar the single
and double types of floating point arithmetic but with a base different from
2. Given a value of A (often 87.7), the inverse of its characteristic function is
defined on [—1,1] by

(1+ImA)z|/A if |2| < 13

f7H (@) = sgn () x exp(z(1+1nA) —1)/A otherwise.

Signal-to-Noise Ratio

Computation of the signal-to-noise ratio
For a given sequence of k values x,, the output [x,] of a quantizer may be
interpreted as the sum of the original value and a perturbation sequence b, =

[xn] — z,, called a noise. The square of the signal-to-noise ratio — or SNR — is
simply the ratio between the energies of those two values:

k-1
+:g
Esp <Z bi)

n=0

The SNR is often measured in decibels (dB):

SNR? =

SNR [dB] = 201og;, SNR = 101og;, SNR?

13

When the values z,, are independent and follow the same probability law p(z),
this energy is given by

p—1 +o00
E (Z xi) =kE (27) = k;/ r?p(x) dz
n=0 -0

and under a high resolution assumption we have

+oo
Esp(?) = / (] - 2)p(z) do

12
=
s

S
<
+
>
S
<

+
e
s
<

®)

|
&

[\v}

IS

=2

y+AW) A(2)2
~ / 52) p(z) dx
g v
+oo A(J})2
= /_Oo 13 p(zx) dz
_ 1 2
Finally
2 dx
Esp(a?) [
NR? = 12 n__ =12 7R
SNR = 12 (A

)?) /RA(x)2p(x) dz

In the typical case where the probability density of the signal is uniform on
[A, A] and the quantization is uniform on this range with a step A, we end up
with

SNR =24/A

Maximization of the SNR

For a given density of probability, how can we select the quantization scheme
so that the SNR is maximal ? Formulated like that, this problem is not well-
posed because the quantization noise may be made a small as possible with
a decrease of the quantization step. The significant problem is to solve this

14

problem under a constant bit budget. Without any loss of generality, we may
assume that the signal has values in [—1, 1] and that the characteristic function
of the searched quantization satisfies f([—1,1]) = [—1, 1]. If we allocate N bits
to the quantization scheme, the step A(x) is determined by

9—N+1
A=

The SNR then takes the form
SNR = k2"

where the value of k depend only from the probability law of the signal and of
the choice of f. In decibels, this equation is written as

SNR [dB] ~ 6.02 x N + &/

that is, every extra bit increase the SNR by approximately 6 dB. To maximize
the SNR, we then have to solve

|
H}i,n/_1 Wp(x) dx subject to f(1) — f(-1)=2

or even, with 1 = f/

mwin.](w) = [1 ﬁx)zp(x) dx with K(v) 2[1 Y(x)de =2

At the optimum, there is a A € R such that the lagrangian L(v)) = J(¢) +AK ()
satisfies dL(v)) = 0, that is

1
for all d¢p: [-1,1] = R, /

-1

<_¢(2x)3p(x) + A) (0¢)(x)dr =0

and that implies
2

and hence

() o (p(2))5.

15

	Principles of Scalar Quantization
	Quantizers
	Example – Integer Rounding

	Uniform Quantization
	Quantization of Random Variables
	Implementation of Non-Uniform Quantizers

	Logarithmic Quantization
	The \mu-law Quantizer
	IEEE754 Floating-Point Numbers and A-law

	Signal-to-Noise Ratio
	Computation of the signal-to-noise ratio
	Maximization of the SNR

