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Quantization is a process that maps a continous or discrete set of values into
approximations that belong to a smaller set. Quantization is a lossy: some
information about the original data is lost in the process. The key to a successful
quantization is therefore the selection of an error criterion — such as entropy
and signal-to-noise ratio — and the development of optimal quantizers for this
criterion.

Principles of Scalar Quantization

Quantizers

A scalar quantizer [ -] is an idempotent mapping from R to a countable subset
of R:

H[z], z € R} < |N| and Va € R, [[z]] = [z]
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Figure 1: quantization of a time-varying value by a 4-bit midtread uniform
quantization on [—1.0,1.0]

This definition should be taken with a grain of salt as variants of the real line
are often used, including the extended real line R U {—o00, +00}, the real line
with signed zeros RU{0~,07}, the real line plus the undefined symbol L, or a
combination thereof.

The countability assumption is what makes the quantizer useful as an attempt
to approximate a continous value by a discrete set that can be encoded as an
integer. A quantizer is meant to be split into a forward and inverse quantizer:
the forward quantizer builds from z an integer code that refers to [x] without
ambiguity and the inverse quantizer builds the approximation [z] back from the
code.

Formally, a forward quantizer for [-] is a mapping i[-] : R — Z such that
[x] = [y] implies i[z] = i[y]. Because of this property, i[-] may be factored into
i[-] =1io][-] where

i:mgl-] — Z.

The notation for the forward quantizer is therefore consistent with the use as
flz] as a shortcut for f([x]). The associated inverse quantizer, denoted i~!, is
a left inverse of i: a mapping whose domain is a subset of Z that contains rngi
and such that

Ve eR, (i7'oi)x] = [z]

The first step of this quantizer composition partitions the real line into the
family of sets (I,,), with
I, ={x € R, i[z] =n}, n € rngi

The second step associates to any set into this partition a unique representative
element. In every practical case we will encounter, the sets I,, are — possibly
unbounded — intervals, either open, half-open or closed. In this context, we



associate to x the decision values [z]~ and [z]T to be

[2]” =inf{y € R, [z] = [y]} and [z]" =sup{y € R, [2] = [y]}

and the step of the quantization at point x is

Example — Integer Rounding

The floor function | -] is a scalar quantizer that maps a real number to the
largest previous integer:

VzeR, |z|€Z and |z] <z <|z]+1

A natural forward quantizer for |- | is .. itself ! The identity n — n is the
corresponding inverse mapping. This quantizer partitions the real-line into the
half-open intervals I,, = [n,n + 1) for any i € Z.

The floor function of NumPy is an finite-precision implementation of this func-
tion. Its argument and return value are (arrays of) 64-bits floating-point num-
bers.

To obtain a (forward) quantizer with a finite range indexable on 32 bits, we may
modify the initial quantizer specification so that the data outside of the range
[-231 231 — 1] - the range of 32-bit signed integers — is clipped:

—231 if » < 231
|z]s2 =23 -1 if 2 >23 -1
|z] otherwise.

Given those modifications, a suitable finite implementation of the forward and
inverse quantizers is the following code/decode pair:

from numpy import *

def encode(x):
n = floor(x)
n = clip(n, -2%x31, 2%*31 - 1)
return int32(n)

def decode(n):
return float64(n)

def quantize(x):
return decode(encode(x))



The step function A of this quantization is defined by:

+oo if < =231 41
Az) = 1if -2 +1<a<23—1
4oo if 21 —1<g

Other rounding functions may serve as the basis for similar schemes: the ceiling
function [-] (NumPy function ceil) defined by:

Ve eR, [z] €Z and [z] —1<z < [z]

Instead of selecting the lower or upper integer approximation of z we may also
select the nearest:

Ve eR, |z —[z]] =min{|z —n|, n € Z}

The value [z] is not defined by this relation when = n + 1/2, n being an
integer. The NumPy function round\_ rounds for example such real number to
the nearest even integer.

This example suggests a general interface for quantizers. Such objects would
provide an encode method for the forward quantization, a decode method for
the inverse quantization and would be callable so that quantizer(x) would ap-
ply both steps to the data x. Such objects could inherit the following Quantizer
base class:

class Quantizer(object):
"Quantizers Base Class."
def encode(self, data):
raise NotImplementedError("undefined forward quantizer")

def decode(self, data):
raise NotImplementedError("undefined inverse quantizer")

def __call__(self, data):
return self.decode(self.encode(data))
We can then rewrite the above integer approximation quantizer as:

class RoundingQuantizer (Quantizer):
def __init__(self, rounding=floor, integer_type=int32):
self.rounding = rounding
self.integer_type

def encode(self, x):

x = array(x)
n = self.rounding(x)
n = clip(n, -2*%*31, 2*x31 - 1)

return n.astype(self.integer_type)



def decode(self, n):
n = array(n)
return n.astype(float64)

rounding_quantizer = RoundingQuantizer()

Note that this version of the quantizer is also vectorized: several values grouped
in a NumPy array may be used as arguments to encode and decode. This
is an implicit requirement that we expect all quantizer classes to follow for
convenience.

Uniform Quantization

A quantizer is uniform in an interval with lower bound a and higher bound b if
its step function is constant in the interval. The size of the step is then directly
connected to the width of the interval and the number N of distinct values of
[] by

The final option that characterizes the quantizer is the choice of the base round-
ing function. A reference implementation is then given by:

class Uniform(Quantizer):
def __init__(self, low=0.0, high=1.0, N=2%*8, rounding=round_):
self.low = float(low)
self.high = float(high)
self N = N
self.delta = (high - low) / self.N
self.rounding = rounding

def encode(self, data):
low, high, delta = self.low, self.high, self.delta
data = clip(data, low + delta/2.0, high - delta/2)
flints = self.rounding((data - low) / delta - 0.5)
return array(flints, dtype=long)

def decode(self, i):
return self.low + (i + 0.5) * self.delta

Note that if the default value of N is selected — or more generally any even value
— [0] # 0: the approximation error for 0 is not zero. When this property may
be an issues, odd values of N may be selected — for example 28 — 1 so that 0
is correctly approximated ; such a quantizer is called a midtread quantizer —
opposed to the original midrise quantizer.
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Figure 2: 4-bit uniform encoder on (0,1): forward quantizer
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Figure 3: 4-bit uniform decoder on (0, 1): inverse quantizer



Quantization of Random Variables

Consider a random variable X with values x € R and a density of probability
p(z). For any [z], we may consider the event [X] = [z] with probability

PXI=bh= [ = [ py

If the density p is constant on every interval associated to the quantization, this
equation may be simplified into:

P([X] = [z]) = p(x) x A(z)

More generally, if the quantizer values [z] are dense enough — we say that the
high resolution assumption is satisfied — then this relation holds approxi-
mately.

The entropy attached to this collection of events is maximal when every event
is equally likely, that is, under this approximation, when the step A(x) is pro-
portional to the inverse of p(x)

Implementation of Non-Uniform Quantizers

Non-uniform quantizers may be — at least conceptually — simply generated from
uniform quantizers and non-linear transformations. If [-] denotes a uniform
quantizer and f is an increasing mapping, the function [-]; defined by the
equation
2]y = (f o]0 f)(z)

and displayed in figure 77 is a nonlinear quantizer. The function f is called the
characteristic function of the quantizer. Depending on the selected range for
the uniform quantizer, it is determined up to an affine transformation.

e e e e R

Figure 4: Nonlinear quantizer implementation

Note that if f is linear or affine, that is f(z) = ax + b, the quantizer [- ] is still
uniform — that’s a reason why uniform quantizers are sometimes called linear
quantizers.

Let A be the step of the uniform quantizer et let’s determine what quantization
step Ay (z) is attached to this scheme.



For every value of z, the decision values attached to y = f(z) by the uniform
quantizer are [y]~ and [y]*. Hence, the decision values for z and the non-linear
quantization are

(2] = 1 (w]7) and [a]} = F7H([y]7)

and if the high resolution assumption is satisfied the step Af(x) is :

_ _ _ _ _ A
Ag(x) = 1™ +2) = ) = (Y (f@)A = )
something that is remembered as
1
A -
1 )
The proportionaly constant may be easily recovered by noting that when f(x) =
z, [-]f = [-] and therefore A(xz) = A. If we impose moreover f(0) = 0, we find
T o ds
x) x —

If the quantizer is to maximize the entropy for the random variable X with
density p(z) we obtain

f(a) / " ply) dy

Example
Let’s consider the digital audio signal displayed in figure ?7.

The uniform quantization on (—1,1) with step A = 107! is dense enough so
that the associated histogram may be considered as a continuous function of
the parameter . We observe in figure 7?7 that this partition generates — for a
large range of values of x — a counting measure n(x) of a few thousands. The
ratio n(x)/n where n is the total number of samples should therefore generate
a good approximation of the density of the signal, considered as a sequence of
independent and identically distributed values.

The logarithm of the histogram is similar to a function of the type —alx|+b, a >
0 (cf fig. ??). We therefore select p(z) o« exp(—alz|). The optimal quantization
— for the entropy criterion — and the corresponding characteristic function f such
that f(0) = 0 are therefore given by:

Ax) o el and f(z) o sign (x)(1 — e—a|a;\)
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T T

1 1
~1.0 0.5 0.0 0.5 1.0

Figure 6: Audio Data Histogram

T T T

| |

1.0 0.5 0.0 0.5 1.0

10—t

Figure 7: Log plot of the audio data histogram



Logarithmic Quantization

We consider in this section several related quantizers whose characteristic func-
tion is — roughly speaking — the logarithm of their argument.

The p-law Quantizer

Consider the probability law

1

p(x) < | 1+ plz|/A
0 otherwise.

if |z| < A,

The threshold A is necessary as otherwise the right-hand side of the equation
would not be summable. The parameter a controls directly the relative proba-
bility of low and high amplitude values as p(+A)/p(0) = 1/(1+ w). In the limit
case = 0, we end up with a uniform probability distribution on [—A, A].

The optimal quantizer for the entropy criterion satisfies () and therefore the
characteristic function f such that f(0) = 0 satisfies

f(x) x sign (z) In (1 + u%) .

If we limit the range of the quantizer to [—1,1] (we set A = 1) and enforce the
constraint f([—1,1]) = [-1, 1], we end up with

log (1 + plz|)

() = sign () S

This quantization scheme is called p-law and is for example used in the
NeXT/Sun AU audio file format (files with extension .au or .snd). The actual
implementation of the law, specified in the ITU-T G.711 standard — differs
slightly from the theoretical formulas. A reference implementation is given in
the code below:

class MulLaw(Quantizer):
nmnn

Mu-law quantizer

scale = 32768

iscale = 1.0 / scale

bias = 132

clip = 32635

etab = array ([0, 132, 396, 924, 1980, 4092, 8316, 16764])
@staticmethod
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mulaw

def

def

def

sign(data):

Sign function such that sign(+0) = 1 and sign(-0) = -1
data = array(data, dtype=float)

s = numpy_sign(data)

i = where(s==0) [0]

s[i] = numpy_sign(1.0 / datal[il)

return s

encode(self, data):

data = array(data)

s = Mulaw.scale * data

s = minimum(abs(s), Mulaw.clip)
[f,e] = frexp(s + Mulaw.bias)

step = floor(32xf) - 16 # 4 bits

chord = e - 8 # 3 bits

sgn = (Mulaw.sign(data) == 1) # 1 bit

mu = 16 * chord + step # 7-bit coding

mu = 127 - mu # bits inversion

mu = 128 * sgn + mu # final 8-bit coding

return array(mu, dtype=uint8)

decode(self, i):

i = array(i)

i=265-1

sgn = i > 127

e = array(floor(i / 16.0) - 8 * sgn + 1, dtype=uint8)
f=17 16

data = ldexp(f, e + 2)

e = MuLaw.etab[e-1]

data = MuLaw.iscale * (1 - 2 * sgn) * (e + data)

return data

MuLaw ()

Note that this code is applied to values between —1 and 1 and uses 8 bits. The
most significant bit encodes the sign; the amplitude of the signal is coded by
the 7 remaining bits. The effective value of p is approximately 250 but instead
of using the expression log(1 + p|z|), we prefer a piecewise affine approximation
of it (see fig ??). The values [z] are then all multiples of 273 which limits
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the additional quantization error when the original signal is initially encoded
with a uniform law using 14 bits or more. To ease the error correction when
transmitted the bits other than the sign bit are finally inverted.
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IEEE754 Floating-Point Numbers and A-law

All scientific computing applications use implicitely a quantizer: the quantizer
that represents approximation of real numbers in the floating-point arithmetic.
The description of two types of numbers — single and double (or rather, single
and double-precision numbers) — is detailled in the IEEE 754 standard. In both
cases, 1 bit is allocated to code the sign of the number, m bits for the exponent
part and n bits for the fraction part,

se{0,1}, ec{0,---,2m —1}, fe{0,---,2" — 1}

consequently any real number is represented by an integer in {0,--- ,2m+n+1}
according to:

n=sx2"t" tex 2"+ feio,--,2m T

The single type is defined by (m,n) = (8,23) and the double type by (m,n) =
(11,52) ; they are respectively coded on 32 and 64 bits.

12



We define
ep=2""1t—-1

so that the value of the actual exponent e—eg range (almost symmetrically) from
2m=1 to —2m~1 4 1. The inverse quantizer attached to the standard floating
point number representation is defined as follows: for an integer n, [z] = i~*(n)
is given by

NaN ife=2"—1and f#0
B (~1)%cc ife=2"—1and f=0
=1 s 4 /an) x2eme i 0<e<om 1
(—1)5(f/2m) x 210 if e=0

The structure of theses inverse quantizers are displayed in the figure ?7; they
are piecewise affine approximation of an exponential with a base of 2, except
in the range e = 0 (the so-called denormalized numbers) where the graph is
linear.

[graph of the inverse quantizer for a floating point representation such that
(m,n) = (4,3)] (images/float.pdf)

The A-law is a variant of the p-law that has a structure similar the single
and double types of floating point arithmetic but with a base different from
2. Given a value of A (often 87.7), the inverse of its characteristic function is
defined on [—1,1] by

(1+ImA)z|/A if |2| < 13

f7H (@) = sgn () x exp(z(1+1nA) —1)/A otherwise.

Signal-to-Noise Ratio

Computation of the signal-to-noise ratio
For a given sequence of k values x,, the output [x,] of a quantizer may be
interpreted as the sum of the original value and a perturbation sequence b, =

[xn] — z,, called a noise. The square of the signal-to-noise ratio — or SNR — is
simply the ratio between the energies of those two values:

k-1
+:g
Esp <Z bi)

n=0

The SNR is often measured in decibels (dB):

SNR? =

SNR [dB] = 201og;, SNR = 101og;, SNR?
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When the values z,, are independent and follow the same probability law p(z),
this energy is given by

p—1 +o00
E (Z xi) =kE (27) = k;/ r?p(x) dz
n=0 -0

and under a high resolution assumption we have

+oo
Esp(?) = / (] - 2)p(z) do

12
=
s

S
<
+
>
S
<

+
e
s
<

®)

|
&

[\v}

IS

=2

y+AW) A(2)2
~ / 52) p(z) dx
g v
+oo A(J})2
= /_Oo 13 p(zx) dz
_ 1 2
Finally
2 dx
Esp(a?) [
NR? = 12 n__ =12 7R
SNR = 12 (A

)?) /RA(x)2p(x) dz

In the typical case where the probability density of the signal is uniform on
[ A, A] and the quantization is uniform on this range with a step A, we end up
with

SNR =24/A

Maximization of the SNR

For a given density of probability, how can we select the quantization scheme
so that the SNR is maximal ? Formulated like that, this problem is not well-
posed because the quantization noise may be made a small as possible with
a decrease of the quantization step. The significant problem is to solve this
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problem under a constant bit budget. Without any loss of generality, we may
assume that the signal has values in [—1, 1] and that the characteristic function
of the searched quantization satisfies f([—1,1]) = [—1, 1]. If we allocate N bits
to the quantization scheme, the step A(x) is determined by

9—N+1
A=

The SNR then takes the form
SNR = k2"

where the value of k depend only from the probability law of the signal and of
the choice of f. In decibels, this equation is written as

SNR [dB] ~ 6.02 x N + &/

that is, every extra bit increase the SNR by approximately 6 dB. To maximize
the SNR, we then have to solve

|
H}i,n/_1 Wp(x) dx subject to f(1) — f(-1)=2

or even, with 1 = f/

mwin.](w) = [1 ﬁx)zp(x) dx with K(v) 2[1 Y(x)de =2

At the optimum, there is a A € R such that the lagrangian L(v)) = J(¢) +AK ()
satisfies dL(v)) = 0, that is

1
for all d¢p: [-1,1] = R, /

-1

<_¢(2x)3p(x) + A) (0¢)(x)dr =0

and that implies
2

and hence

() o (p(2))5.
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