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Quantization is a process that maps a continous or discrete set of values into
approximations that belong to a smaller set. Quantization is a lossy: some
information about the original data is lost in the process. The key to a successful
quantization is therefore the selection of an error criterion – such as entropy
and signal-to-noise ratio – and the development of optimal quantizers for this
criterion.

Principles of Scalar Quantization

Quantizers

A scalar quantizer [ · ] is an idempotent mapping from R to a countable subset
of R:

|{[x] , x ∈ R}| ≤ |N| and ∀x ∈ R, [[x]] = [x]
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Figure 1: quantization of a time-varying value by a 4-bit midtread uniform
quantization on [−1.0, 1.0]

This definition should be taken with a grain of salt as variants of the real line
are often used, including the extended real line R ∪ {−∞,+∞}, the real line
with signed zeros R ∪ {0−, 0+}, the real line plus the undefined symbol ⊥, or a
combination thereof.

The countability assumption is what makes the quantizer useful as an attempt
to approximate a continous value by a discrete set that can be encoded as an
integer. A quantizer is meant to be split into a forward and inverse quantizer:
the forward quantizer builds from x an integer code that refers to [x] without
ambiguity and the inverse quantizer builds the approximation [x] back from the
code.

Formally, a forward quantizer for [·] is a mapping i[ · ] : R → Z such that
[x] = [y] implies i[x] = i[y]. Because of this property, i[ · ] may be factored into
i[ · ] = i ◦ [ · ] where

i : rng [ · ] → Z.

The notation for the forward quantizer is therefore consistent with the use as
f [x] as a shortcut for f([x]). The associated inverse quantizer, denoted i−1, is
a left inverse of i: a mapping whose domain is a subset of Z that contains rngi
and such that

∀x ∈ R, (i−1 ◦ i)[x] = [x]

The first step of this quantizer composition partitions the real line into the
family of sets (In)n with

In = {x ∈ R, i[x] = n}, n ∈ rngi

The second step associates to any set into this partition a unique representative
element. In every practical case we will encounter, the sets In are – possibly
unbounded – intervals, either open, half-open or closed. In this context, we
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associate to x the decision values [x]− and [x]+ to be

[x]− = inf {y ∈ R, [x] = [y]} and [x]+ = sup {y ∈ R, [x] = [y]}

and the step of the quantization at point x is

∆(x) = [x]+ − [x]−

Example – Integer Rounding

The floor function ⌊ · ⌋ is a scalar quantizer that maps a real number to the
largest previous integer:

∀x ∈ R, ⌊x⌋ ∈ Z and ⌊x⌋ ≤ x < ⌊x⌋ + 1

A natural forward quantizer for ⌊ · ⌋ is … itself ! The identity n 7→ n is the
corresponding inverse mapping. This quantizer partitions the real-line into the
half-open intervals In = [n, n+ 1) for any i ∈ Z.

The floor function of NumPy is an finite-precision implementation of this func-
tion. Its argument and return value are (arrays of) 64-bits floating-point num-
bers.

To obtain a (forward) quantizer with a finite range indexable on 32 bits, we may
modify the initial quantizer specification so that the data outside of the range
[−231, 231 − 1] – the range of 32-bit signed integers – is clipped:

⌊x⌋32 =

∣∣∣∣∣∣
−231 if x ≤ −231

231 − 1 if x ≥ 231 − 1
⌊x⌋ otherwise.

Given those modifications, a suitable finite implementation of the forward and
inverse quantizers is the following code/decode pair:

from numpy import *

def encode(x):
n = floor(x)
n = clip(n, -2**31, 2**31 - 1)
return int32(n)

def decode(n):
return float64(n)

def quantize(x):
return decode(encode(x))

3



The step function ∆ of this quantization is defined by:

∆(x) =

∣∣∣∣∣∣
+∞ if x < −231 + 1

1 if − 231 + 1 ≤ x < 231 − 1
+∞ if 231 − 1 ≤ x

Other rounding functions may serve as the basis for similar schemes: the ceiling
function ⌈·⌉ (NumPy function ceil) defined by:

∀x ∈ R, ⌈x⌉ ∈ Z and ⌈x⌉ − 1 < x ≤ ⌈x⌉

Instead of selecting the lower or upper integer approximation of x we may also
select the nearest:

∀x ∈ R, |x− [x]| = min {|x− n|, n ∈ Z}

The value [x] is not defined by this relation when x = n + 1/2, n being an
integer. The NumPy function round\_ rounds for example such real number to
the nearest even integer.

This example suggests a general interface for quantizers. Such objects would
provide an encode method for the forward quantization, a decode method for
the inverse quantization and would be callable so that quantizer(x) would ap-
ply both steps to the data x. Such objects could inherit the following Quantizer
base class:

class Quantizer(object):
"Quantizers Base Class."
def encode(self, data):

raise NotImplementedError("undefined forward quantizer")

def decode(self, data):
raise NotImplementedError("undefined inverse quantizer")

def __call__(self, data):
return self.decode(self.encode(data))

We can then rewrite the above integer approximation quantizer as:

class RoundingQuantizer(Quantizer):
def __init__(self, rounding=floor, integer_type=int32):

self.rounding = rounding
self.integer_type

def encode(self, x):
x = array(x)
n = self.rounding(x)
n = clip(n, -2**31, 2**31 - 1)
return n.astype(self.integer_type)
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def decode(self, n):
n = array(n)
return n.astype(float64)

rounding_quantizer = RoundingQuantizer()

Note that this version of the quantizer is also vectorized: several values grouped
in a NumPy array may be used as arguments to encode and decode. This
is an implicit requirement that we expect all quantizer classes to follow for
convenience.

Uniform Quantization

A quantizer is uniform in an interval with lower bound a and higher bound b if
its step function is constant in the interval. The size of the step is then directly
connected to the width of the interval and the number N of distinct values of
[x] by

∆(x) = b− a

N

The final option that characterizes the quantizer is the choice of the base round-
ing function. A reference implementation is then given by:

class Uniform(Quantizer):
def __init__(self, low=0.0, high=1.0, N=2**8, rounding=round_):

self.low = float(low)
self.high = float(high)
self.N = N
self.delta = (high - low) / self.N
self.rounding = rounding

def encode(self, data):
low, high, delta = self.low, self.high, self.delta
data = clip(data, low + delta/2.0, high - delta/2)
flints = self.rounding((data - low) / delta - 0.5)
return array(flints, dtype=long)

def decode(self, i):
return self.low + (i + 0.5) * self.delta

Note that if the default value of N is selected – or more generally any even value
– [0] ̸= 0: the approximation error for 0 is not zero. When this property may
be an issues, odd values of N may be selected – for example 28 − 1 so that 0
is correctly approximated ; such a quantizer is called a midtread quantizer –
opposed to the original midrise quantizer.
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Figure 2: 4-bit uniform encoder on (0, 1): forward quantizer

0 4 8 12 16

0.00

0.25

0.50

0.75

1.00

0+

i−1(n)

n

Figure 3: 4-bit uniform decoder on (0, 1): inverse quantizer
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Quantization of Random Variables

Consider a random variable X with values x ∈ R and a density of probability
p(x). For any [x], we may consider the event [X] = [x] with probability

P ([X] = [x]) =
∫

{y∈R, [y]=[x]}
p(y) dy =

∫ [x]+

[x]−
p(y) dy

If the density p is constant on every interval associated to the quantization, this
equation may be simplified into:

P ([X] = [x]) = p(x) × ∆(x)

More generally, if the quantizer values [x] are dense enough – we say that the
high resolution assumption is satisfied – then this relation holds approxi-
mately.

The entropy attached to this collection of events is maximal when every event
is equally likely, that is, under this approximation, when the step ∆(x) is pro-
portional to the inverse of p(x)

∆(x) ∝ 1
p(x)

Implementation of Non-Uniform Quantizers

Non-uniform quantizers may be – at least conceptually – simply generated from
uniform quantizers and non-linear transformations. If [ · ] denotes a uniform
quantizer and f is an increasing mapping, the function [ · ]f defined by the
equation

[x]f = (f−1 ◦ [ · ] ◦ f)(x)
and displayed in figure ?? is a nonlinear quantizer. The function f is called the
characteristic function of the quantizer. Depending on the selected range for
the uniform quantizer, it is determined up to an affine transformation.

Figure 4: Nonlinear quantizer implementation

Note that if f is linear or affine, that is f(x) = ax+ b, the quantizer [ · ]f is still
uniform – that’s a reason why uniform quantizers are sometimes called linear
quantizers.

Let ∆ be the step of the uniform quantizer et let’s determine what quantization
step ∆f (x) is attached to this scheme.

7



For every value of x, the decision values attached to y = f(x) by the uniform
quantizer are [y]− and [y]+. Hence, the decision values for x and the non-linear
quantization are

[x]−f = f−1([y]−) and [x]+f = f−1([y]+)

and if the high resolution assumption is satisfied the step ∆f (x) is :

∆f (x) = f−1([y]− + ∆) − f−1([y]−) ≃ (f−1)′(f(x))∆ = ∆
f ′(x)

something that is remembered as

∆f (x) ∝ 1
f ′(x)

The proportionaly constant may be easily recovered by noting that when f(x) =
x, [ · ]f = [ · ] and therefore ∆(x) = ∆. If we impose moreover f(0) = 0, we find

f(x) ∝
∫ x

0

ds

∆(s)

If the quantizer is to maximize the entropy for the random variable X with
density p(x) we obtain

f(x) ∝
∫ x

0
p(y) dy

Example

Let’s consider the digital audio signal displayed in figure ??.

The uniform quantization on (−1, 1) with step ∆ = 10−1 is dense enough so
that the associated histogram may be considered as a continuous function of
the parameter x. We observe in figure ?? that this partition generates – for a
large range of values of x – a counting measure n(x) of a few thousands. The
ratio n(x)/n where n is the total number of samples should therefore generate
a good approximation of the density of the signal, considered as a sequence of
independent and identically distributed values.

The logarithm of the histogram is similar to a function of the type −a|x|+b, a >
0 (cf fig. ??). We therefore select p(x) ∝ exp(−a|x|). The optimal quantization
– for the entropy criterion – and the corresponding characteristic function f such
that f(0) = 0 are therefore given by:

∆(x) ∝ ea|x| and f(x) ∝ sign (x)(1 − e−a|x|)
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Figure 5: Around 20 seconds of audio data
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Figure 6: Audio Data Histogram
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Figure 7: Log plot of the audio data histogram
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Logarithmic Quantization

We consider in this section several related quantizers whose characteristic func-
tion is – roughly speaking – the logarithm of their argument.

The µ-law Quantizer

Consider the probability law

p(x) ∝

∣∣∣∣∣∣
1

1 + µ|x|/A
if |x| ≤ A,

0 otherwise.

The threshold A is necessary as otherwise the right-hand side of the equation
would not be summable. The parameter a controls directly the relative proba-
bility of low and high amplitude values as p(±A)/p(0) = 1/(1 +µ). In the limit
case µ = 0, we end up with a uniform probability distribution on [−A,A].

The optimal quantizer for the entropy criterion satisfies () and therefore the
characteristic function f such that f(0) = 0 satisfies

f(x) ∝ sign (x) ln
(

1 + µ
x

A

)
.

If we limit the range of the quantizer to [−1, 1] (we set A = 1) and enforce the
constraint f([−1, 1]) = [−1, 1], we end up with

f(x) = sign (x) log (1 + µ|x|)
log(1 + µ)

This quantization scheme is called µ-law and is for example used in the
NeXT/Sun AU audio file format (files with extension .au or .snd). The actual
implementation of the law, specified in the ITU-T G.711 standard – differs
slightly from the theoretical formulas. A reference implementation is given in
the code below:

class MuLaw(Quantizer):
"""
Mu-law quantizer
"""
scale = 32768
iscale = 1.0 / scale
bias = 132
clip = 32635
etab = array([0, 132, 396, 924, 1980, 4092, 8316, 16764])

@staticmethod
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def sign(data):
"""
Sign function such that sign(+0) = 1 and sign(-0) = -1
"""
data = array(data, dtype=float)
s = numpy_sign(data)
i = where(s==0)[0]
s[i] = numpy_sign(1.0 / data[i])
return s

def encode(self, data):
data = array(data)
s = MuLaw.scale * data
s = minimum(abs(s), MuLaw.clip)
[f,e] = frexp(s + MuLaw.bias)

step = floor(32*f) - 16 # 4 bits
chord = e - 8 # 3 bits
sgn = (MuLaw.sign(data) == 1) # 1 bit

mu = 16 * chord + step # 7-bit coding
mu = 127 - mu # bits inversion
mu = 128 * sgn + mu # final 8-bit coding

return array(mu, dtype=uint8)

def decode(self, i):
i = array(i)
i = 255 - i
sgn = i > 127
e = array(floor(i / 16.0) - 8 * sgn + 1, dtype=uint8)
f = i % 16
data = ldexp(f, e + 2)
e = MuLaw.etab[e-1]
data = MuLaw.iscale * (1 - 2 * sgn) * (e + data)

return data

mulaw = MuLaw()

Note that this code is applied to values between −1 and 1 and uses 8 bits. The
most significant bit encodes the sign; the amplitude of the signal is coded by
the 7 remaining bits. The effective value of µ is approximately 250 but instead
of using the expression log(1 +µ|x|), we prefer a piecewise affine approximation
of it (see fig ??). The values [x] are then all multiples of 2−13 which limits
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the additional quantization error when the original signal is initially encoded
with a uniform law using 14 bits or more. To ease the error correction when
transmitted the bits other than the sign bit are finally inverted.
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IEEE754 Floating-Point Numbers and A-law

All scientific computing applications use implicitely a quantizer: the quantizer
that represents approximation of real numbers in the floating-point arithmetic.
The description of two types of numbers – single and double (or rather, single
and double-precision numbers) – is detailled in the IEEE 754 standard. In both
cases, 1 bit is allocated to code the sign of the number, m bits for the exponent
part and n bits for the fraction part,

s ∈ {0, 1}, e ∈ {0, · · · , 2m − 1}, f ∈ {0, · · · , 2n − 1}

consequently any real number is represented by an integer in {0, · · · , 2m+n+1}
according to:

n = s× 2m+n + e× 2n + f ∈ {0, · · · , 2m+n+1}

The single type is defined by (m,n) = (8, 23) and the double type by (m,n) =
(11, 52) ; they are respectively coded on 32 and 64 bits.
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We define
e0 = 2m−1 − 1

so that the value of the actual exponent e−e0 range (almost symmetrically) from
2m−1 to −2m−1 + 1. The inverse quantizer attached to the standard floating
point number representation is defined as follows: for an integer n, [x] = i−1(n)
is given by

[x] =

∣∣∣∣∣∣∣∣
NaN if e = 2m − 1 and f ̸= 0

(−1)s∞ if e = 2m − 1 and f = 0
(−1)s(1 + f/2n) × 2e−e0 if 0 < e < 2m − 1

(−1)s(f/2n) × 21−e0 if e = 0

The structure of theses inverse quantizers are displayed in the figure ??; they
are piecewise affine approximation of an exponential with a base of 2, except
in the range e = 0 (the so-called denormalized numbers) where the graph is
linear.

[graph of the inverse quantizer for a floating point representation such that
(m,n) = (4, 3)] (images/float.pdf)

The A-law is a variant of the µ-law that has a structure similar the single
and double types of floating point arithmetic but with a base different from
2. Given a value of A (often 87.7), the inverse of its characteristic function is
defined on [−1, 1] by

f−1(x) = sgn (x) ×
∣∣∣∣ (1 + lnA)|x|/A if |x| < 1

1+lnA
exp(x(1 + lnA) − 1)/A otherwise.

Signal-to-Noise Ratio

Computation of the signal-to-noise ratio

For a given sequence of k values xn, the output [xn] of a quantizer may be
interpreted as the sum of the original value and a perturbation sequence bn =
[xn] − xn called a noise. The square of the signal-to-noise ratio – or SNR – is
simply the ratio between the energies of those two values:

SNR2 =
Esp

(
k−1∑
n=0

x2
n

)

Esp

(
k−1∑
n=0

b2
n

)

The SNR is often measured in decibels (dB):

SNR [dB] = 20 log10 SNR = 10 log10 SNR2
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When the values xn are independent and follow the same probability law p(x),
this energy is given by

E

(
p−1∑
n=0

x2
n

)
= kE

(
x2
n

)
= k

∫ +∞

−∞
x2p(x) dx

and under a high resolution assumption we have

Esp(b2
n) =

∫ +∞

−∞
([x] − x)2p(x) dx

=
∑
y

∫ y+∆(y)

y

([x] − x)2p(x) dx

≃
∑
y

p(y)
∫ y+∆(y)

y

(y + ∆(y)/2 − x)2 dx

=
∑
y

p(y)∆(y)3

12

≃
∑
y

∫ y+∆(y)

y

∆(x)2

12
p(x) dx

=
∫ +∞

−∞

∆(x)2

12
p(x) dx

= 1
12

Esp
(
∆(xn)2)

Finally

SNR2 = 12 Esp(x2
n)

Esp(∆(xn)2)
= 12

∫
R
x2p(x) dx∫

R
∆(x)2p(x) dx

In the typical case where the probability density of the signal is uniform on
[−A,A] and the quantization is uniform on this range with a step ∆, we end up
with

SNR = 2A/∆

Maximization of the SNR

For a given density of probability, how can we select the quantization scheme
so that the SNR is maximal ? Formulated like that, this problem is not well-
posed because the quantization noise may be made a small as possible with
a decrease of the quantization step. The significant problem is to solve this
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problem under a constant bit budget. Without any loss of generality, we may
assume that the signal has values in [−1, 1] and that the characteristic function
of the searched quantization satisfies f([−1, 1]) = [−1, 1]. If we allocate N bits
to the quantization scheme, the step ∆(x) is determined by

∆(x) = 2−N+1

f ′(x)

The SNR then takes the form

SNR = κ2N

where the value of κ depend only from the probability law of the signal and of
the choice of f . In decibels, this equation is written as

SNR [dB] ≃ 6.02 ×N + κ′

that is, every extra bit increase the SNR by approximately 6 dB. To maximize
the SNR, we then have to solve

min
f ′

∫ 1

−1

1
f ′(x)2 p(x) dx subject to f(1) − f(−1) = 2

or even, with ψ = f ′

min
ψ
J(ψ) =

∫ 1

−1

1
ψ(x)2 p(x) dx with K(ψ) =

∫ 1

−1
ψ(x) dx = 2

At the optimum, there is a λ ∈ R such that the lagrangian L(ψ) = J(ψ)+λK(ψ)
satisfies dL(ψ) = 0, that is

for all δψ : [−1, 1] → R,
∫ 1

−1

(
− 2
ψ(x)3 p(x) + λ

)
(δψ)(x) dx = 0

and that implies
− 2
ψ(x)3 p(x) + λ = 0

and hence
f ′(x) ∝ (p(x)) 1

3 .
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