
Digital Audio Coding
Lab Session 5 – AWARE

Sébastien Boisgérault, Mines-ParisTech

March 12, 2015

This work is licensed under a Creative Commons Attribution 3.0 Unported
License (CC BY 3.0). You are free to share – to copy, distribute and transmit
the work – and to remix – to adapt the work – under the condition that the
work is properly attributed to its author.

Preamble

This lab session is dedicated to the implementation of a perceptual audio coder
using filter banks, psychoacoustic models and vector quantization of subband
data. For the sake of simplicity, we will only consider stationary sounds so that
we may compute the psychoacoustic mask of the sound only once.
In the sequel, the sampling frequency ∆f is 44.1 kHz, spectral analysis is
performed on frames of 512 samples and vector quantization is applied on frames
of 12 samples in each of the 32 subbands of the filter bank.
You may skip the questions identified with a ? symbol in a first pass.

Filter Banks

In the sequel, we assume that all symbols of audio.filters have been imported.

1. Analysis Filter Bank. The code

>>> A, dt = MPEG.A, MPEG.dt
>>> analyze = Analyzer(A, dt=dt)

creates an instance of an analysis filter bank based on of the pseudo-
quadrature mirror filters (PQMF) of the MPEG standard. This polyphase
implementation consumes frames of 32 consecutive samples and outputs
an arrays of 32 values, one for each subband.

1

http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

>>> assert shape(frame) == (32,)
>>> subband_data = analyze(frame)

Use this filter bank to implement display_subbands, a function that
displays graphically the subband decomposition of signals of audio data of
arbitrary length. Test this function with the data:

data = square(f=1760.0, N=10000)

where the square signal is implemented with:

def square(f, N=512, df=44100):
n = int(round_(0.5 * (df / f)))
frame = n * [1.0] + n * [-1.0]
frames = (N // len(frame) + 1) * frame
return array(frames)[:N]

..

0

.

20

.

40

.

60

.

80

.

100

.

120

.

140

.

160

.

subband data

.

0

.

5

.

10

.

15

.

20

.

25

.

30

.

su
bb

an
d

nu
m

be
r

.

Subband decomposition of a square signal (unit amplitude, f = 1760 Hz).

2. Synthesis Filter Bank. Symmetrically, a PQMF synthesis filter bank
may be instantiated with:

>>> S, dt, M = MPEG.S, MPEG.dt, MPEG.M
>>> synthesize = Synthesizer(S, dt=dt, gain=M)

The application of this instance to subband data generates an audio frame:

2

>>> frame = synthesize(subband_data)

Implement a function reconstruct that takes a 1d array of samples for
argument and returns a 1d array that has been analyzed and synthesized.
? Use a test function – such as an impulse – to determine how much delay
the whole analysis and synthesis process induces. Modify reconstruct to
compensate for that delay.
? Is the reconstruction perfect ? Determine experimentally the order of
magnitude of the signal-to-noise of the reconstruction process (irrespective
of the induced delay). Is it good enough ?

Psychoacoustics Mask

Let P be the (normalized) sound power of the frame x:

P =
〈
x2(t)

〉
= 1

512

511∑
n=0

x(n∆t)2 = ∆f

512

[
∆t

511∑
n=0

x(n∆t)2

]

1. Power Spectrum. In the frequency domain, we have:

P = ∆f

512

[∫ ∆f/2

−∆f/2
|x(f)|2 df

]
= ∆f

512

[
2
∫ ∆f/2

0
|x(f)|2 df

]
.

Fast Fourier Transform. We discretize the frequency range [0, ∆f/2]:

fk = k∆f

512 , k = 0, ..., 256 and x̂k = ∆f × x(f = fk).

The x̂k are (approx. half of) the Discrete Fourier Transform coefficients of
the sequence x(t = n∆t), n = 0, ..., 511.
Use the trapezoidal rule to compute an approximation of P that instead
of the integral over frequencies above relies on a finite sum that uses the
x̂k. What is the contribution Pk of the frequency fk to this sum ?
Use the Fast Fourier Transform to implement a function P_k_from_frame
whose argument is a frame of 512 sample values and that computes the
array of values Pk.
? Use a random frame to compute the sum of the Pk ; compare it to P .
Can you explain why the values are so close ?
Scaling. The power P is normalized: it belongs to [0, 1] if x(t) ∈ [−1, +1].
Modify the code of P_k_from_frame: scale the returned array so that the
sum of its values is in the [0, 109.6] range instead.

3

Introduce an optional boolean argument dB to P_k that allows to return the
intensities as sound pressure levels (dB shall default to False: intensities
are then computed as usual).
Power Spectrum. Display the power spectrum – the power Pk as a
function of the frequency fk – of the pure tone with unit amplitude A8
(frequency: 7040 Hz) in a linear scale, then in a dB scale.
Windows. Extend the function P_k_from_frame with an optional window
argument, that will be applied to the array frame before the spectral
analysis. As this process will likely alter the signal power, the array frame
should also be scaled to attempt to restore the initial intensity level.
? Create a frame made of a pure tone with frequency 7040 Hz (A8)
and another one with frequency 14080 Hz (A9) whose amplitude is one
thousandth (1/1000) of the first. Display the power spectrum of this frame
in a dB scale with and without a hanning window. What is the purpose of
the window in this context ?

2. Tonal/Non-Tonal Classification. The component k ∈ {3, ..., 249} of
the array Pk is considered tonal if Pk is greater than or equal to Pk−1 and
Pk+1 and Pk ≥ Pk+j + 7.0 dB for every j ∈ Jk.

k Jk

003 ≤ k < 063 {−2, +2}
063 ≤ k < 127 {−3,−2, +2, +3}
127 ≤ k < 250 {−6,−5,−4,−3,−2, +2, +3, +4, +5, +6}

Implement a function maskers that given a frame of length 512 returns:

• (k_t, P_t): the index and power arrays of tonal components,
• (k_nt, P_nt): the index and power arrays of non-tonal components.

3. Masking Patterns. We assume that a single masker with frequency bm

bark and sound pressure level Im (in dB) generates at the frequency b bark
a mask level of

mask level [dB] = m(b) + a(b) with ∆b = b− bm (1)

where the base mask level m(b) is defined as

m(b) =

∣∣∣∣∣∣∣∣
(+11.0− 0.40× Im) × (∆b + 1.0) if ∆b < −1.0

+ (+6.0 + 0.40× Im) × (∆b + 0.0) if ∆b < 0.0
+ (−17.0) × (∆b + 0.0) if 0.0 ≤ ∆b
+ (0.15× Im) × (∆b− 1.0) if 1.0 ≤ ∆b

4

and the attenuation a(b) is given by

a(b) =
∣∣∣∣ −1.525− 0.275× b− 4.5 if the masker is tonal,
−1.525− 0.175× b− 0.5 otherwise.

..

4000

.

5000

.

6000

.

7000

.

8000

.

9000

.

10000

.

11000

.

12000

.
f in Hz

.

0

.

25

.

50

.

75

.

100

.

m
as

k
le

ve
li

n
dB

.

Mask of the tonal masker A8 (7040 Hz) with a SPL of 96 dB

? In this model, is the masking effect of tonal sounds stronger or weaker
than the one of non-tonal sounds ? Is a loud voice with a high pitch more
likely to to mask another loud voice with a low pitch or the opposite ?
Implement a function excitation_pattern whose arguments are:

• b: an array of frequencies in bark,
• b_m: the frequency of the masker in bark,
• I_m: the power of the masker in dB,
• tonal: a boolean, True for tonal maskers, False otherwise,

and that returns:

• mask: an array of the mask levels at the frequencies b.

4. Composite Masks and Sampling. Develop a code that given a frame,
computes its power spectrum at every frequency fk, then the mask associ-
ated to every spectral component and creates a global mask array from
the addition of the all mask powers and the absolute threshold of hearing1.
This implementation provides 257 mask levels, one for every fk. What we
need is one mask level for every of the 32 subbands that split uniformly
the frequency range [0, ∆f/2]. How should we select the subband mask
level if we intend to be conservative ?
Implement this strategy in a function mask_from_frame whose argument
is a frame of 512 samples and that returns the 32 subband mask levels in
dB.

1Warning: the addition of powers should be performed in the original linear scale.

5

5. Tests. Apply the previous computations with frames of stationary signals
such as square signals, and display graphically the results in a function
display_mask.

..

0

.

5

.

10

.

15

.

20

.

f in bark

.

0

.

20

.

40

.

60

.

80

.

100

.

m
as

k/
so

un
d

le
ve

li
n

dB

.

Mask of a square signal (unit amplitude, f = 1760 Hz).

.

tonal components

.

non-tonal components

.

mask

.

subband mask (inc. ATH)

Subband Data Vector Quantization

1. Scale Factors. The quantization of subband data is based on 32 vector
quantizers: each of these quantizers is applied not to a single sample values,
but to frames of 12 consecutive values. All values of such frames are divided
by a scale factor to be mapped into [−1, +1] ; then, a uniform midtread
quantizer on [−1, +1] is applied.
The scale factor of a frame is determined – among a finite list of candidate
scale factors – as the least value greater than all the absolute values in the
frame, or the greatest candidate scale factor value if no scale factor that
satisfies this condition exist.
Define an increasing array of 64 scale factors with the following pattern:

>>> scale_factors
[..., 0.5, 0.62996, 0.79370, 1.0, 1.25992, 1.58740, 2.0]

2. Bit Rate and Bit Pool Size. Consider a sequence of 32 frames of 12
values, one frame by subband. Assume that the uniform quantizer used in
the subband i can use bi bits for the quantization any scaled sample, with
bi ∈ {0, 1, 2, ..., 15}.

6

Compute the total number of bits required to describe in every subband:

• the scale factor selected,
• the number bi of bits allocated,
• the quantized values of the frame of 12 samples.

? At what frequency are produced batches of 32 × 12 sample values by
the analysis filter bank ? What is the bit rate of the quantization, as a
function of the total number of bits b = b0 + b1 + ... + b31 allocated for a
frame of 12 (scaled) values ? We select a target bit rate of 192 kb/s (for a
single-channel data) ; what is the value of the bit pool size b ?

3. Bit Allocation Algorithm. The bit allocation algorithm of the first
psychoacoustics model of MPEG-1 is based on the comparison in each
subband of the noise level due to the quantization and the mask level
generated by the psychoacoustic analysis. The algorithm that we implement
iteratively allocates bits to make the noise-to-mask ratio approximately
equal in each subband.
Consider a single scale factor quantizer [·], applied to a frame of 12 values,
that has computed the scale factor A and may use b bits by sample.
Compute the quantization noise level

noise level [dB] = 10 log10
〈
([x]− x)2〉 .

under the high resolution hypothesis.
Implement a function allocate_bits with arguments frames and mask,
where frames is an array of shape (12, 32) and mask a sequence of 32
mask levels in dB, that returns the array [b_0, b_1, ..., b_31].
The function shall implement the following algorithm:
while the bitpool is not empty:

i) compute the noise-to-mask ratio in dB for each subband

NMR [dB] = noise level [dB]−mask level [dB]

ii) find the subband with the worst (biggest) noise-to-mask ratio,
iii) allocate one extra bit from the bit pool to this subband, starting at 0.

Integration – Perceptual Compression

Implement a function demo that given a single-channel sound data will perform
the compression and decompression by the methods of the previous section,
display both signal and finally play both signals. Introduce an extra argument
bit_pool that allows to compress with a bit rate different from the default.

7

..

0

.

20

.

40

.

60

.

80

.

100

.

120

.
sample index

.

−1.0

.

−0.5

.

0.0

.

0.5

.

1.0

.

sa
m

pl
e

va
lu

e

.

Compression of a square signal (bit rate: 192 kb/s).

.

original sound

.

compressed sound

Use this function to test the compression of stationary signals (pure tones,
square signals, white noise) and study in each case how much the bit pool size
can be decreased without too much quality loss.

8

	Preamble
	Filter Banks
	Psychoacoustics Mask
	Subband Data Vector Quantization
	Integration – Perceptual Compression

