
Spectral Analysis
Digital Audio Coding

sebastien.boisgerault@mines-paristech.fr

Discrete-Time Fourier Transform

frequency domain

tim
e domain

Spectral Decomposition Problem

Given ,

such that ,

find

Instead, search for such that

(with)

then

Complex Exponentials

If is a solution of

... so is for any .

Define

Uniqueness of the Decomposition

?

What is the frequency of this signal ?

Frequency Ambiguity

What is the frequency of this signal ?

Frequency Ambiguity

What is the frequency of this signal ?

Frequency Ambiguity

Search for , solution of

Spectral Decomposition - Conclusion

These choices yield uniqueness and:

and enforce periodicity of .

Decimation

Decimation - Spectrum

Filtering

or signal convolution in the time domain:

is the filter impulse response:

filter

It's multiplication in the frequency domain:

Low-Pass Filter

In the time domain:

with

The impulse response is acausal and infinite.

Defined in the frequency domain by:

where is the cutoff frequency.

Low-Pass Filter
Concrete implementations are causal and finite:

def low_pass(fc, dt=1.0, window=ones):
 def h(n):
 t = arange(-0.5 * (n-1), 0.5 * (n-1) + 1) * dt
 return 2 * fc * sinc(2 * fc * t) * window(n)
 return h

>>> N = 31
>>> h = low_pass(fc=8000.0, dt=1.0/44100.0)(N)
>>> y = dt * convolve(h, u)

Filter the (finite, causal) signal :

Low-Pass Filter

Downsampling

low-pass
filter

F.T. & Signal Energy
Parseval theorem for Fourier series yields:

and proves that is an isomorphism:

F.T. & Measures
Some signals are not of finite energy but
may be represented in the Fourier domain
as measures*:

*: periodic, complex-valued, with no singular continous part.

They correspond in the time domain to:

periodic

Spectrum Computation

def F(x, dt=1.0):
 n = reshape(r_[0:len(x)], (-1, 1))
 def Fx(f):
 f = reshape(f, (1, -1))
 return dt * dot(x, exp(-1j * 2 * pi * dt * n * f))
 return Fx

Finite causal signal: all values are zero but :

Fast Fourier Transform - FFT

The DFT is a function, not an algorithm, that
may be used to compute some spectrum
(a.k.a. (DT)FT) values, for finite and causal signals.

The naive algorithm (as a matrix-vector product)
to compute the DFT has a complexity.

FFT refer to a family of algorithms that perform
the DFT with a complexity.

FFT Benchmarks

Filter Banks

Distortion

Perfect reconstruction:

where the -th distortion function is

The filter banks output satisfies:

Modulated Filter Banks
Pick a lowpass filter with ,
and a frequency response .

Modulate the prototype filter by

Modulated Filter Banks
Example: select a prototype truncated from

and as

select

Modulated Filter Banks
Distortions

same analysis and synthesis filters

Pseudo-Quadrature Mirror Filters

where is the prototype filter length.

2. Optimize the prototype filter w.r.t. the distortion.

1. Use the phase in the modulation:

Pseudo-Quadrature Mirror Filters
Example: MPEG Layer I + II

MPEG.h0: prototype filter coefficients,
MPEG.M: number of subbands: 32,
MPEG.N: filters length: 513,
MPEG.df: sampling frequency (44100.0),
MPEG.dt: sampling period (1.0/44100.0),
MPEG.A: analysis filter bank: (M,N) array,
MPEG.S: synthesis filter bank: (M, N) array.

prototype filter
impulse response

Pseudo-Quadrature Mirror Filters
Example: MPEG Layer I + II : distortion.

Polyphase Filter Banks

de
la
ys

class Analysis(object):
 def __init__(self, a, dt=1.0):
 self.M, self.N = shape(a)
 self.A = a * dt
 self.buffer = zeros(self.N)
 def __call__(self, frame):
 self.buffer[self.M:] = buffer[:-self.M]
 self.buffer[:self.M] = frame
 return dot(self.A, self.buffer)

Polyphase Filter Banks

+

+

+

delays

class Synthesis(object):
 def __init__(self, s, dt=1.0)
 self.M, self.N = shape(s)
 self.S = self.M * dt * s
 self.buffer = zeros(self.N)
 def __call__(self, frame):
 self.buffer += dot(frame, self.S)
 output = self.buffer[-self.M:].copy()
 self.buffer[self.M:] = self.buffer[:-self.M]
 self.buffer[:self.M] = zeros(self.M)
 return output

Acoustics
 : quadratic mean (RMS) sound pressure

: sound pressure level (dB).

: sound intensity

Acoustics

: sound (intensity) density (dB)

Acoustics
Normalized sound pressure waveforms

are interpreted as:

This convention yields:

Absolute Threshold of Hearing

Simultaneous Masking
Fletcher's Model

Consider:
 - a masker with sound density ,
 - a pure test tone with sound pressure level
 and frequency .

Masking occurs if:

where is the critical bandwidth.

Critical Bandwidth

The Bark Unit
Measure frequencies in the critical-band scale:
 - first, 0 Bark corresponds to 0 Hz,
 - then, +1 Bark to + Hz,

>>> from psychoacoustics import *
>>> bark([0.0, 1e4, 2e4])
array([0.0, 22.424, 24.575])
>>> hertz([0, 1, 2, 3])
array([0.0, 101.3, 203.7, 308.5])

>>> critical_bandwidth(440)
113.497
>>> critical_bandwidth(5000)
914.016

Masking by Pure Tones
Eight pure tones, with the same SPL of .
The lowest frequency is 110 Hz, and doubles with
each new masker.

Band-Limited Noise Maskers
Noise centered at 400 Hz, bandwith , .

psychoacoustics
Mask class that acts as a compositor.

>>> ATH(440.0)
6.9720432781188926
>>> masker = mask(L=50, fc=400, bandwidth=0)
>>> masker(440.0)
50.0
>>> (masker + ATH)(440)
50.00021626

sum of intensities

Filter Banks: Bit Allocation

+

+

+

psychoacoustics

qu
an

ti
ze
r

Filter Banks: Bit Allocation
Let be the signal component in subband ,
 the (normalized) masking level intensity
and the corresponding quantizer.

The quantization noise is inaudible if:

Meeting these conditions may require high
and/or variable bit rates, so we solve instead:

Filter Banks: Bit Allocation
If every is a uniform quantizer on
with step size the optimal bit allocation is:

If every is instead optimal w.r.t. the SNR,
optimal bit allocation is achieved by seing the
step size of the embedded linear quantizer to:

with

 is the signal-to-mask ratio in subband .

