Digital Audio Coding
Lab Session 1 — WAVE

Sébastien Boisgérault,
Mines-ParisTech.

Dec. 10, 2012

@ ® @ ®

This work is licensed under a Creative Commons Attribution 3.0 Unported
License (CC BY 3.0). You are free to share — to copy, distribute and transmit
the work — and to remix — to adapt the work — under the condition that the
work is properly attributed to its author.

Synthesis of Pure Tones

We denote A4 the analog audio signal defined by
Ay(t) = cos(2m x 440.0 x t), t € R,

It’s a pure tone with unit amplitude, frequency 440.0 Hz, and no phase.

Let Af be the Compact Disc Digital Audio sample rate

Af =44.1 kHz.
1. Define the variables df and dt that denote the sampling frequency in hertz
and the sampling period in seconds that correspond to Af.

2. Create the increasing array t of the multiples of At in the interval [0, 3.0).
Define the array A4 of sampled values of A at these instants.

3. Plot two periods of this sampled signal against the time.

http://creativecommons.org/licenses/by/3.0/deed.en_US
http://creativecommons.org/licenses/by/3.0/deed.en_US

time in ms: ¢t € Z/Af x 1000.0

4. Save the sampled signal A4 as a WAVE file named "A4.wav".

5. Automate and generalize: the name “A4” comes from the scientific pitch
notation, a convention that defines the frequency of symbols that are made
of a letter followed by a number identifying the pitch octave. The following
table displays such frequencies for the letter “A”:

Symbol f (Hz)

Ay 27.5
A4 55.0
Ay 110.0
As 220.0
Ay 440.0
As 880.0
Ay 14080.0

Ay 28160.0

Implement a function make_tone that given such a symbol argument:

e returns the values of a 3-sec. audio sample,

o creates a WAVE file whose name is symbol + ".wav".

Sound Pressure Level and Loundness

1. Create the pure tones A0 to A10 and the corresponding WAVE files.

2. Sound power:

1. Implement a function SPL that given a 1-dim. array x argument returns
the sound pressure level (SPL) of x in decibels:

L[dB] = 96.0 + 10logy, (x?)

http://en.wikipedia.org/wiki/Scientific_pitch_notation
http://en.wikipedia.org/wiki/Scientific_pitch_notation

where (y) is the mean value of y.
2. Check that the SPL of every tone is (approximately) the same.

3. What the is analytical formula of this shared value 7
3. Listening tests:

1. Play the audio files "A0.wav" to "A10.wav" in sequence.
2. Is the loudness of the sounds constant across the octaves ? What does
it mean ?

3. Does the frequency of "A10.wav" feel very different from the frequency
of "A9.wav" ? Can you make sense of that ?

WAVE Format Header Analysis

The WAVEform audio file format — or WAVE for brevity — is a Microsoft and IBM
digital audio file format. It is a subset of Microsoft’s Resource Interchange File
Format (RIFF) specification for multimedia file. The WAVE format supports
several types of compressions, but we will deal only with the uncompressed
format (also referred to as 16-bit linear PCM, for “Pulse Code Modulation”).

1. WAVE file names often have a ".wav" extension, but this is not strictly
mandatory: files content can be searched instead for a signature specific
to this format.

Search the web for a description of the WAVE header, identify the WAVE
file signature and implement an is_wave function that takes a filename
argument and returns True if the file is a WAVE file and False otherwise.

2. Implement a function wave_info that given a WAVE filename returns
informations about the audio data, namely:

e the number of channels

e the data sample rate.

This function should conform to the following example usage:

>>> wave_info("A4.wav")
{"num_channels": 1, "sample_rate": 44100}

Quantization and Signal-to-Noise Ratio

1. Use the read function of the wave Digital Audio Coding module to load
the data of the audio file "A5.wav" as an array of floats in the [-1.0,1.0]
range

2. Compute the quantization error — or quantization noise — e, defined as the
difference between A4_wav and the original array A4.

3. Compute the quantization signal-to-noise ratio (SNR) in decibels:

A42
SNR [dB] = 10log;, SNR? where SNR? = <<62>>

Fading: Frames and Windows

The tones that we have generated so far do not start or end smoothly and the
transition from one tone to another is not smooth either. Such fade in, fade out
and cross-fading may be implemented with windows.

1. Extend the make_tone function so that it takes an optional argument
window, a window factory : a function, that takes a length argument and
returns a window of this length. A window is a one-dimensional array that
is meant to be multiplied element-wise to the original signal.

Search the web for the definition of classic windows. Apply for example
the “Hanning window” on the pure tone A4 and listen to the result.

2. Consider the signals A0 to A10. Create a single “blended” (crossfaded)
signal that merges windowed versions of these signals in sequence, with a
1.5 sec (50%) overlap between successive signals.

3. What if the successive signals are actually frames extracted from a common
signal 7 When does the merge between the frames reconstruct exactly the
original signal 7 This condition is referred to as Constant-OverLap-Add
(or COLA).

4. Show that the standard Hanning window satisfies only roughly this condi-
tion. Define the window (factory) hanning?2 that given a length n returns
the first n values of the hanning window of length n + 1. Show that this
window satifies the COLA condition with a high precision.

	Synthesis of Pure Tones
	Sound Pressure Level and Loundness
	WAVE Format Header Analysis
	Quantization and Signal-to-Noise Ratio
	Fading: Frames and Windows

