
Digital Audio Coding
Lab Session 2 – SHRINK

Sébastien Boisgérault,
Mines-ParisTech.

Nov. 9, 2012

This work is licensed under a Creative Commons Attribution 3.0 Unported
License (CC BY 3.0). You are free to share – to copy, distribute and transmit
the work – and to remix – to adapt the work – under the condition that the
work is properly attributed to its author.

About SHRINK

SHRINK is an simple audio file format that relies on lossless audio compression
algorithms and hence is similar to FLAC, ALAC or SHORTEN.

The command-line program shrink implements a SHRINK codec (coder/decoder
pair): the command

$ shrink sound.wav

turns the uncompressed WAVE file "sound.wav" into a "sound.shk" file (only
44.1 kHz, 16-bit linear PCM content is supported) and conversely the command

$ shrink sound.shk

uncompresses the SHRINK file "sound.shk" into "sound.wav". The command
shrink --help provides more options.

The shrink program is implemented on top of a Python module also named
shrink. The SHRINK format actually gathers different codecs versions – num-
bered 0 to 5 – of increasing complexity and performance.

1

http://creativecommons.org/licenses/by/3.0/deed.en_US
http://creativecommons.org/licenses/by/3.0/deed.en_US
http://flac.sourceforge.net/
http://alac.macosforge.org/
http://mi.eng.cam.ac.uk/reports/svr-ftp/auto-pdf/robinson_tr156.pdf


0 1 2 3 4 5

version of the SHRINK coder

0

20

40

60

80

100
fi
le

si
ze

(%
o
f

th
e

o
ri

g
in

a
l

fi
le

si
ze

)

Performance of SHRINK coders on a voice sample

Each version of the codec is defined by two functions: a coder shrink_v? and a
decoder grow_v? where ? stands for the version number; these two functions
transform data – a numpy array of type int16 – into stream – a bitstream –
and reciprocally, according to the following diagram:

shrink_v?
WAVE file ←→ data −−−−−→ stream ←→ SHRINK file

44.1 kHz, PCM array ←−−−−− BitStream
grow_v?

The aim of the lab session is to study the algorithms behind the design of
SHRINK and to implement the main features of this coder.

SHRINK Format Structure

The high-level structure of the SHRINK file format is given by:

Size Unit Content
89 bit header

? bit channel 1

? bit channel 2

< 8 bit zero-padding

2



where the content of the header is:

Size Unit Name Type Range/Value
6 byte magic ASCII, big endian "SHRINK"

1 byte version unsigned integer [0, ..., 5]

4 byte length unsigned integer, number of samples

big endian (per channel)

1 bit stereo boolean True or False

The format of the channel fields is version-dependent.

1. What is the purpose of the zero-padding in this context ?

2. Generate a SHRINK bitstream with no channel data (for example with
version 0 and a single channel). Make sure that the function grow_v0 from
the Python module shrink can successfully decode this stream.

Amplitude Rice Coder

For each channel, the version 0 of the SHRINK compression algorithm:

• determines an appropriate value of the Golomb parameter,

• encodes it in the channel field as a 16-bit big-endian unsigned integer,

• encodes the values of the channel array with this instance of Rice coder.

Size Unit Content Type
8 bit Golomb parameter unsigned integer

? bit sample values Rice encoded data

Table 1: SHRINK version 0 channel format.

1. What is maximal value of the Golomb parameter that it makes sense to
consider for 16-bit signed integer data ? Are 8 bits enough to store the
Golomb parameter ?

2. What does a Golomb parameter of 0 correspond to ? Compute a worst-
case estimate of the size of the channel data of A4, coded with a Golomb
parameters of 0.

3



3. Use the heuristic provided in the rice coder to compute the “best” value
of the Golomb parameter p. Check the size of the coded data for Golomb
parameters between p− 3 and p + 3.

4. Implement the coder function shrink_v0. Test it on the data from
"A4.wav". Did we achieve any compression ? Why ? Generate an audio
data signal more likely to be effectively compressed by shrink_v0 and test
this hypothesis.

Simple Prediction Coders

Convention: finite sequences of numeric values (x0, x1, ..., xN−1) – represented
as one-dimensional arrays of length N – are assimilated to infinite sequences
indexed on Z, denoted (xn)n, with a value of 0 outside of the initial index range.

The difference operator ∆ on sequences is defined by

∆(xn)n = (xn)n − (xn−1)n

1. Implement the restriction of ∆ to arrays as a function D. Make sure that the
length of the output array is the same as the input array. Is the operator
∆ invertible ? What about the function D ?
Implement version 1 of the SHRINK coder shrink_v1 that encodes the
channel data as:

Size Unit Content Type
8 bit Golomb parameter unsigned integer

? bit sample difference Rice encoded data

Table 2: SHRINK version 1 channel format.

Study the reduction of average “size” of the difference values with respect to
the original sample values and the corresponding reduction of the Golomb
parameter. Compute the compression rate achieved on the file "A4.wav".

2. A predictive coder encodes the prediction residual en = xn − x̂n where x̂n

is a prediction of xn based on the past values of this sequence. Show that
version 0 and 1 of SHRINK are simple predictive coders. What is their
prediction of xn ?

3. Implement version 2 of the SHRINK coder shrink_v2 that replaces the
previous predictor schemes with a linear extrapolation of xn based on xn−1
and xn−2.

4



Size Unit Content Type
8 bit Golomb parameter unsigned integer

? bit linear extrap. residual Rice encoded data

Table 3: SHRINK version 2 channel format.

Study the reduction of average “size” of the new residual and the correspond-
ing reduction of the Golomb parameter. Compute the new compression
rate achieved on the file "A4.wav".

Adaptative Polynomial Prediction Coder

For any n ∈ Z and any numbers xn−m−1, xn−m, . . . , xn−1, there is a single
polynomial Pn whose order is at most m such that:

Pn(n−m− 1) = xn−m−1, Pn(n−m) = xn−m, ..., Pn(n− 1) = xn−1.

The polynomial prediction of order m maps a sequence (xn)n to the sequence
(x̂n)n defined by x̂n = Pn(n).

1. Can you describe versions 1 and 2 of the SHRINK coders in terms of
polynomial prediction ? Show for a given prediction order m, there is a
sequence of numbers (a0, a1, ..., am) such that for any n ∈ Z:

x̂n = a0 + a1xn−1 + · · ·+ amxn−m−1

2. Prove that the prediction residual (en)n = (xn)n − (x̂n)n associated to the
prediction of order m can be expressed simply with the difference operator.
Prove that the prediction residual has only integer values when the initial
sequence has only integer values, and that the values to prediction residual
mapping may be inverted.

3. Implement a function that given a signal computes its average absolute
value, then compute the average absolute value of the polynomial prediction
of order 0, 1, etc. until this average value stops to decrease, in order to
determine the optimal prediction order and the corresponding residual.
We take as a convention that no prediction (direct encoding of the signal
values) corresponds to a prediction order of −1.
Implement version 3 of the coder shrink_v3, with the following channel
format:

5



Size Unit Content Type
? bit prediction order + 1 Rice encoded data.

Golomb param. 3, unsigned.

8 bit Golomb parameter p unsigned integer

? bit prediction residual Rice encoded data.

Golomb param. p, signed.

Table 4: SHRINK version 3 channel format.

Compute the new compression rate achieved on the file "A4.wav".

Framed Prediction

The properties of an audio signal may change completely in different sections
of its time frame but he still probably has some local consistency. We may
therefore search for the best predictor locally instead of globally and expect
higher compression ratios.

1. Implement the shrink_v4 coder that splits a signal into frames of 20
ms, and applies the channel data coder from the version 3 to each frame
separately.

2. This method has the drawback to include a “cold restart” of the algorithm
for each new frame: every frame analysis is done as if the previous values
of the signal were all zeros and the first predicted values are therefore
probably very inaccurate. Modify the previous coder into shrink_v5 to
solve that problem.

3. Study the performance of version 4 and 5 of the coders with respect to the
version 3 on smooth synthetic signals, such as A4, and on more realistic
signals, such as music or voice signals.

6


	About SHRINK
	SHRINK Format Structure
	Amplitude Rice Coder
	Simple Prediction Coders
	Adaptative Polynomial Prediction Coder
	Framed Prediction

