
Linear Prediction
Digital Audio Coding

sebastien.boisgerault@mines-paristech.fr

Parametric Models

Assume that is onto ; invert with

param. data
model

Synthesis

Analysis

Parametric Models
Quantization

Analysis Synthesis

Linear Prediction Principles

Given a sequence of values ,
find the best approximation of such that:

The prediction is linear and (strictly) causal.
The number is the prediction order.
The prediction error/residual is defined by:

Linear Prediction

+

Synthesis Filter (autoregressive)

Linear Prediction
Covariance Method

Solve

with

Linear Prediction

Covariance Method:

Linear Prediction

Unique solution if is into:

Otherwise, one solution of:

provided by:

where

Linear Prediction

def lp(x, m):
 ”Linear predictor coefficients -- covariance method”
 n = len(x)
 A = array([x[m - 1 - arange(0, m) + i] for i in range(n-m)])
 b = x[m:n]
 a = lstsq(A, b)[0]
 return a

With numpy.linalg least-square solution to :

AutoCorrelation

The solutions are the same if we minimize:

Variant: treat the data as an infinite signal.
Set if and minimize:

AutoCorrelation
def lp(x, m, zero_padding=False):
 ”Linear predictor coefficients”
 if zero_padding:
 x = r_[zeros(m), x, zeros(m)]
 n = len(x)
 A = array([x[m - 1 - arange(0, m) + i] for i in range(n-m)])
 b = x[m:n]
 a = lstsq(A, b)[0]
 return a

Method Selection

Covariance:
 - Fast computation,
 - Accurate solution.

Autocorrelation:
 - Even faster computation,
 - Stable synthesis filter.

Voice Audio Data
You Wanna Have Babies ?

8 kHz, mono.

20 ms frame

Voice Audio Data
Short-Term Prediction

voice prediction error

order 16, autocorrelation

Analysis Filter
Finite Impulse Response filter - FIR

class FIR(Filter):
 def __call__(self, input):
 output = self.a[0] * input + dot(self.a[1:], self.state)
 self.state = r_[input, self.state[:-1]]
 return output

FIR

FIR Example
Moving Average

>>> ma = FIR(0.25 * ones(4))
>>> ma(1.0)
0.25
>>> ma(2.0)
0.75
>>> ma([3.0, 4.0])
array([1.5, 2.5])

FIR for Linear Prediction
>>> a = lp(data, order=m, ...)

Predictor
>>> predictor = FIR(r_[0, a])

Analysis Filter
>>> error = FIR(r_[1.0, -a])

Synthesis Filter
Auto-Regressive filter - AR

class AR(Filter):
 def __call__(self, input):
 output = self.a[0] * input + dot(self.a, self.state)
 self.state = r_[output, self.state[:-1]]
 return output

AR

AR Example

>>> ar = AR([0.5])
>>> ar.state = [1.0]
>>> ar(0.0)
0.5
>>> ar(0.0)
0.25
>>> ar(0.0)
0.125
>>> ar(0.0)
0.0625

AR for Linear Prediction
Synthesis Filter

>>> a = lp(data, m, ...)
>>> synthesis = AR(a)
>>> data = synthesis(error)

Transfer Function

are related by:

Given , the inputs and outputs below
filter

FIR:

AR:

Spectral Analysis
A voice spectrum may be (locally) computed
by a (windowed) FFT, or periodogram.

If the prediction of this data has was succesful,
the error is (almost) white: , and
the synthesis filter provides a parametric
spectrum estimate:

Vocal Tract: Horn Model

Law of Motion

density

Compressibility

bulk modulus

: pressure

: air flow

: cross-section

Webster's Equation
Wave Velocity Impedance

If is constant:

Discrete Model

Reflection Coefficients:

Ladder/Lattice Filters
Kelly-Lochbaum Junction

Compensate for delay and aenuation:

Linear Predictive Coding
AR synthesis filters: laice filters oen replace
register-based implementations.

- Levinson-Durbin and Schur algorithms are
 fast and provide directly the reflection coefficients
 that match the experimental data.

- Synthesis filter are stable iff .
 antize the area ratio and preserve stability:

Pitch Detection

offsetThe solution of

is given by

Autocorrelation Function

def ACF(data, frame_length):
 def normalize(x):
 return x / norm(x)
 m, n = frame_length, len(data)
 A = array([normalize(data[n-m-i:n-i]) for i in range(n-m+1)])
 return dot(A, normalize(data[-frame_length:]))

Long-Term Prediction

LTP Synthesis (AR) Filter

LTP residual

Linear Predictive Coding

parameter estimation

stp ltp
Analysis Filter

stpltp
Synthesis Filter

"Pure" LPC

Analysis power

white
noise Synthesis

APC / RELP

Analysis

Synthesis

Adaptative Predictive Coding
Residual-Excited Linear Prediction

CELP
Code-Excited Linear Prediction

Analysis Synthesis

codebook

match

Synthesiscodebook

