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Spectral Decomposition - Conclusion

These choices yield uniqueness and:
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Decimation - Spectrum



Filtering

or signal convolution in the time domain:

is the filter impulse response:

filter

It's multiplication in the frequency domain:



Low-Pass Filter

In the time domain:

with

The impulse response is acausal and infinite.

Defined in the frequency domain by:

where     is the cutoff frequency.



Low-Pass Filter
Concrete implementations are causal and finite:

def low_pass(fc, dt=1.0, window=ones):
    def h(n):
        t = arange(-0.5 * (n-1), 0.5 * (n-1) + 1) * dt
        return 2 * fc * sinc(2 * fc * t) * window(n)
    return h

>>> N = 31
>>> h = low_pass(fc=8000.0, dt=1.0/44100.0)(N)
>>> y = dt * convolve(h, u)

Filter the (finite, causal) signal        :



Low-Pass Filter



Downsampling
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filter



F.T. & Signal Energy
Parseval theorem for Fourier series yields:

and proves that      is an isomorphism:



F.T. & Measures
Some signals are not of finite energy but
may be represented in the Fourier domain
as measures*:

*: periodic, complex-valued, with no singular continous part.

They correspond in the time domain to:

periodic



Spectrum Computation

def F(x, dt=1.0):
    n = reshape(r_[0:len(x)], (-1, 1))
    def Fx(f ):
        f = reshape(f, (1, -1))
        return dt * dot(x, exp(-1j * 2 * pi * dt * n * f ))
    return Fx

Finite causal signal: all values are zero but : 





Fast Fourier Transform - FFT

The DFT is a function, not an algorithm, that
may be used to compute some spectrum 
(a.k.a. (DT)FT) values, for finite and causal signals.

The naive algorithm (as a matrix-vector product)
to compute the DFT has a              complexity.

FFT refer to a family of algorithms that perform 
the DFT with a                      complexity.  



FFT Benchmarks











Filter Banks



Distortion

Perfect reconstruction:

where the   -th distortion function      is

The filter banks output satisfies:



Modulated Filter Banks
Pick a lowpass filter with                       , 
and a frequency response         .

Modulate the prototype filter by



Modulated Filter Banks
Example: select a prototype truncated from

and as

select



Modulated Filter Banks
Distortions

same analysis and synthesis filters



Pseudo-Quadrature Mirror Filters

where     is the prototype filter length.

2. Optimize the prototype filter w.r.t. the distortion.

1. Use the phase in the modulation:



Pseudo-Quadrature Mirror Filters
Example: MPEG Layer I + II

MPEG.h0: prototype filter coefficients,
MPEG.M:  number of subbands: 32,
MPEG.N:  filters length: 513,
MPEG.df:  sampling frequency (44100.0),
MPEG.dt: sampling period (1.0/44100.0),
MPEG.A:  analysis filter bank: (M,N) array,
MPEG.S:  synthesis filter bank: (M, N) array.

prototype filter
impulse response



Pseudo-Quadrature Mirror Filters
Example: MPEG Layer I + II : distortion.



Polyphase Filter Banks

de
la
ys

class Analysis(object):
    def __init__(self, a, dt=1.0):
        self.M, self.N = shape(a)
        self.A = a * dt
        self.buffer = zeros(self.N)
    def __call__(self, frame):
        self.buffer[self.M:] = buffer[:-self.M]
        self.buffer[:self.M] = frame
        return dot(self.A, self.buffer)



Polyphase Filter Banks
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delays

class Synthesis(object):
    def __init__(self, s, dt=1.0)
        self.M, self.N = shape(s)
        self.S = self.M * dt * s
        self.buffer = zeros(self.N)
    def __call__(self, frame):
        self.buffer += dot(frame, self.S)
        output = self.buffer[-self.M:].copy()
        self.buffer[self.M:] = self.buffer[:-self.M]
        self.buffer[:self.M] = zeros(self.M)
        return output



Acoustics
    : quadratic mean (RMS) sound pressure 

: sound pressure level (dB).

: sound intensity



Acoustics

: sound (intensity) density (dB)



Acoustics
Normalized sound pressure waveforms

are interpreted as:

This convention yields:



Absolute Threshold of Hearing



Simultaneous Masking
Fletcher's Model

Consider:
  - a masker with sound density           ,
  - a pure test tone with sound pressure level    
    and frequency   .

Masking occurs if:

where           is the critical bandwidth.



Critical Bandwidth



The Bark Unit
Measure frequencies in the critical-band scale:
  - first, 0 Bark corresponds to 0 Hz,
  - then, +1 Bark to +         Hz,

>>> from psychoacoustics import *
>>> bark([0.0, 1e4, 2e4])
array([0.0,  22.424,  24.575])
>>> hertz([0, 1, 2, 3])
array([0.0,  101.3,  203.7,  308.5])

>>> critical_bandwidth(440)
113.497
>>> critical_bandwidth(5000)
914.016



Masking by Pure Tones
Eight pure tones, with the same SPL of                    .
The lowest frequency is 110 Hz, and doubles with
each new masker.



Band-Limited Noise Maskers
Noise centered at 400 Hz, bandwith       ,                  .



psychoacoustics
Mask class that acts as a compositor.

>>> ATH(440.0)
6.9720432781188926
>>> masker = mask(L=50, fc=400, bandwidth=0)
>>> masker(440.0)
50.0
>>> (masker + ATH)(440)
50.00021626

sum of intensities



Filter Banks: Bit Allocation
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Filter Banks: Bit Allocation
Let       be the signal component in subband   ,
           the (normalized) masking level intensity 
and         the corresponding quantizer.

The quantization noise is inaudible if:

Meeting these conditions may require high
and/or variable bit rates, so we solve instead:



Filter Banks: Bit Allocation
If every         is a uniform quantizer on                
with step size       the optimal bit allocation is:  

If every        is instead optimal w.r.t. the SNR,
optimal bit allocation is achieved by seing the
step size of the embedded linear quantizer to:

with

        is the signal-to-mask ratio in subband   .


