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Preamble
This lab session investigates two lossy compression methods:

1. subsampling (or downsampling),

2. nonlinear (scalar) quantization.

This combination of methods is used in the context of speech compression, for
example in the G.711 ITU-T 1972 standard for “Pulse Code Modulation (PCM)
of Voice Frequencies” that encodes data at a 64 kbits/s bit rate. In this lab
session we design a compression scheme, applicable to 256 kbit/s (16-bit, 16 kHz)
audio data, that relies on these two methods and also achieves a 64 kbit/sec
output bit rate.

The TIMIT corpus is a collection of read speech data with time-aligned phonetic
and word information about utterances that are stored as 16-bit wide band
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audio data, i.e. sampled at 16 kHz. A subset of this corpus is available Natural
Language Toolkit (NLTK) Python library:

>>> import nltk
>>> timit = nltk.corpus.timit

The selection of audio data in NLTK relies on utterances identifiers with a
naming scheme that refers to speaker and sentence information, for example:

>>> uid = "dri1-fvmhO/sx206"

Refer to the NLTK documentation for an detailled explanation of this scheme.
The list of all utterance identifiers is available as timit.utteranceids().

To load the audio data with identifier uid as an array of 16-bit integers type:

>>> from bitstream import BitStream
>>> raw = timit.audiodata(uid)
>>> data = BitStream(raw).read(intl16, inf).newbyteorder()

"dr1-fvmh0/sx206" audio data (waveform):

“when peeling an orange it is hard not to spray juice”
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Wide-Band vs Narrow-Band Speech Coding

The TIMIT audio data has been sampled at the frequency of 16 kHz, in order
to describe the audio content up to 8 kHz. In the context of voice data, this
is considered wide-band, a frequency range large enough to ensure the quality
needed for all kinds of applications.

But most of the spoken voice contents are actually in the 30 Hz - 3400 Hz
frequency range; this narrow-band is therefore sufficient for many applications
where the size of the data matters. We may therefore use a sample rate of 8
kHz instead of 16 kHz, have a two-fold decrease of the audio data size and still
capture most of the voice content.

In this section, we generate such narrow-band data from wide-band data.
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1. Load the original 16 kHz audio data "dr1-fvmh0/sx206" and listen to it.
Drop every other value from the data array and save the result as a 8 kHz
WAVE file. Listen to it, assess its quality and explain it.

2. Compute the frequency response of a perfect low-pass filter with a sample
rate of f = 16 kHz and a cutoff frequency f. = 4 kHz. Truncate and
delay the impulse response of this filter to obtain an approximation that is
causal and has a finite impulse response (FIR) of length N = 127. Plot
the amplitude of its frequency response.

Low-pass filter frequency response (amplitude)
fe = 8000 Hz, N = 127, rectangular window.
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3. Convert the original audio data to an array of floating-point numbers in the
[-1.0,+1.0] range. Apply the low-pass filter to these data, then decimate
it by a factor of two. Save the result as a 8 kHz WAVE file, listen to it
and compare its quality with the audio data from paragraph 1.

4. Measure the maximal error (in dB) between the perfect filter and its
approximation in the pass-band 0—3400 Hz and in the stop-band 4600—8000
Hz (do not take into account the error induced by the delay). Is it good
enough ?

5. Show that increasing the filter length decreases the approximation error.
Say that we can allow a maximal delay of 20 ms in the signal processing.
Can solve our problem simply be increasing the length of the filter ?

6. Multiply the FIR impulse responses obtained previously by a selection
of some classic windows of appropriate size. Can this approach solve the
approximation problem 7

Quantization

1. Load the 8 kHz WAVE file obtained at step 4. of the previous section, first
as an array of 16-bit integers. Then, scale it linearly such that the integer
215 is mapped to the floating-point number 1.0.

2. Implement a function quantizer_SNR that, given a Quantizer instance
quantizer and a one-dimensional floating-point array data, computes



the signal-to-noise ratio (in dB) associated to the quantization of data by
quantizer.

3. Compute the power P (mean square value) of the audio data. What is
the theoretical value of the quantization SNR — under a high resolution
assumption — as a function of the number b of quantization bits ? Compute
the effective quantization SNR for a uniform quantizer on [—1,1] and
b=2,3,...,12 ; compare with the theory.

4. Is the value 0 encoded exacly by these midrise quantizers 7 Why 7 What
is the simplest way to design a uniform b-bit quantizer on [—1,1] that has
this property (is midtread) ? Compute the effective quantization SNR for
such quantizers and compare with the results of the previous step.
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5. Display the SNR of the previous midrise and midtread quantizer for b in
the 13 — 24 range. What is going on for 16 bits and above ? Why is there
such a discrepancy between the experimental measures of the SNR and
the theory ?

6. We say that the quantizer |- ]2 has a higher resolution than the quantizer
[-]1 if any value produced by [-]; is encoded without error by [-]2.

Are our b-bit midrise and midtread quantizers higher resolution than the
16-bit quantizer used in the WAVE format when b > 16 ?

Design a family of uniform quantizers, indexed by the number of allocated
bits b, such that:
e the 16-bit quantizer is consistent with the 16-bit WAVE quantizer,

o if by < by, the bo-bit quantizer has a higher resolution than the b;-bit
quantizer.



Compute the effective quantization SNR for such quantizers and compare
with the previous experimental results.

. Quantize the data with the (8-bit, nonlinear) u-law quantizer. What is
the corresponding SNR 7 How many bits would be required to achieve the
same precision with a uniform quantizer 7 Show that the 16-bit linear
quantizer is higher-resolution than the p-law quantizer.

. Create an histogram of the values x of data and find a parameter a
such that the probability density proportional to exp —alz| is a decent
approximation of the repartion of the data.

Implement the nonlinear quantizer that is optimal w.r.t. this probability
law. Compute its SNR and compare with the p-law.
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