Psychoacoustics Digital Audio Coding

SEBASTIEN.BOISGERAULT@MINES-PARISTECH.FR

Acoustics

P: quadratic mean (RMS) sound pressure

$$P^{2} = \left\langle p^{2} \right\rangle = \frac{1}{N} \sum_{n=0}^{N-1} p(t)^{2}$$

L : sound pressure level (dB). $L = 10 \log_{10} \frac{P^2}{P_0^2}, \ P_0 = 20 \,\mu \text{Pa}$

I: sound intensity

$$\frac{I}{I_0} = \frac{P^2}{P_0^2}, \ I_0 = 10^{-12} \,\mathrm{W}/$$

 $^{2} dt$

$$\begin{aligned} \textbf{Acoustics} \\ P^2 &= \frac{2}{N\Delta t} \int_0^{\Delta f/2} |p(f)| \end{aligned}$$

 $\ell(f)$: sound (intensity) density (dB)

$$\ell(f) = 10 \log_{10} \frac{2}{N\Delta t} \frac{|p(f)|}{P}$$

$$10^{L/10} = \int_0^{\Delta f/2} 10^{\ell(f)/10}$$

 $|^2 df$

 $\frac{f)|^2}{52}_0$

Acoustics

Normalized sound pressure waveforms $x(t) \in [-1.0, +1.0]$

are interpreted as:

$$p(t) = 10^{4.8} P_0 \times x(t)$$

This convention yields:

 $L = 10 \log_{10} \left\langle x^2 \right\rangle + 96 \,\mathrm{dB}$

 $\ell(f) = 10 \log_{10} \left(\frac{2}{N\Delta t} |x(f)|^2 \right) + 96 \, \mathrm{dB}$

Dynamic Range - 16 bit Maximal SPL:

$|x(t)| = 1 \rightarrow L = 96 \text{ dB}$

"Minimal" SPL : Quantization Noise SPL

$$\mathbb{E}(X - [X])^2 \simeq \frac{1}{12} \mathbb{E}\Delta(X)^2 = \frac{1}{12}$$

 $L = 10 \log_{10} \mathbb{E} (X - [X])^2 + 96 \text{ dB} \simeq -5.1 \text{ dB}$

Dynamic Range: max SPL - min SPL $96 - (-5.1) \simeq 100 \text{ dB}.$

$\frac{1}{12} \left(\frac{2}{2^{16}}\right)^2$

Absolute Threshold of Hearing

Simultaneous Masking **Fletcher's Model**

Consider:

- a masker with sound density $\ell_m(f)$,
- a pure test tone with sound pressure level Land frequency f.

Masking occurs if: $\int_{f-\Delta(f)/2}^{f+\Delta(f)/2} 10^{\ell_m(f)/10} \, df \ge 10^{L/10}$

where $\Delta(f)$ is the critical bandwidth.

Critical Bandwidth

The Bark Unit Measure frequencies in the critical-band scale: - first, 0 Bark corresponds to 0 Hz, - then, +1 Bark to + $\Delta(f)$ Hz,

 $f[Bark] = 13.0 \times \arctan(0.76 f / 1000.0)$ $+3.5 \times \arctan(f/1000.0/7.5)^{2}$

>>> from psychoacoustics import * >>> bark([0.0, 1e4, 2e4]) array([0.0, 22.424, 24.575]) 113.497 >>> hertz([0, 1, 2, 3]) array([0.0, 101.3, 203.7, 308.5]) 914.016

>> critical_bandwidth(440) >> critical_bandwidth(5000)

Masking by Pure Tones Eight pure tones, with the same SPL of L = 100 dB. The lowest frequency is 110 Hz, and doubles with each new masker.

psychoacoustics

Mask class that acts as a compositor.

>>> **ATH**(440.0) 6.9720432781188926 >> masker = mask(L=50, fc=400, bandwidth=0) >>> masker(440.0) 50.0 >>> (masker + ATH)(440) 50.00021626

sum of intensities

Filter Banks: Bit Allocation

Filter Banks: Bit Allocation

Let X_k be the signal component in subband k, $P_m(k)$ the (normalized) masking level intensity and $[\cdot]_k$ the corresponding quantizer.

The quantization noise is inaudible if:

$$\forall k, \mathbb{E}[(X_k - [X_k]_k)^2] \le F$$

Meeting these conditions may require high and/or variable bit rates, so we solve instead:

$$\min \sum_{k=0}^{M-1} \frac{\mathbb{E}[(X_k - [X_k]_k)]}{P_m(k)}$$

- $P_m(k)$

Filter Banks: Bit Allocation

If every $[\cdot]_k$ is a quantizer on [-1, +1]with the same characteristic function *f*, and b_k bits, the optimal bit allocation is:

$2^{b_k} \propto \mathrm{SMR}_k$ with $\mathrm{SMR}_k^2 = \frac{\mathbb{E}[X_k^2]}{P_{\infty}(k)}$

SMR_k is the signal-to-mask ratio in subband k.