
Digital Audio Coding
Lab Session 2 – SHRINK

Sébastien Boisgérault,
Mines-ParisTech.

Feb. 19, 2015

This work is licensed under a Creative Commons Attribution 3.0 Unported
License (CC BY 3.0). You are free to share – to copy, distribute and transmit
the work – and to remix – to adapt the work – under the condition that the
work is properly attributed to its author.

About SHRINK

SHRINK is an simple audio file format that relies on lossless audio compression
algorithms and hence is similar to FLAC, ALAC or SHORTEN.

The command-line program shrink implements a SHRINK codec: the command

$ shrink sound.wav

turns the uncompressed WAVE file "sound.wav" into a "sound.shk" file (only
44.1 kHz, 16-bit linear PCM content is supported) and conversely the command

$ shrink sound.shk

uncompresses the SHRINK file "sound.shk" into "sound.wav". The command
shrink --help provides more options.

The shrink program is implemented on top of a Python module named
audio.shrink. The SHRINK format actually gathers different codecs versions –
numbered 0 to 5 – of increasing complexity and performance.

1

http://creativecommons.org/licenses/by/3.0/deed.en_US
http://creativecommons.org/licenses/by/3.0/deed.en_US
http://flac.sourceforge.net/
http://alac.macosforge.org/
http://mi.eng.cam.ac.uk/reports/svr-ftp/auto-pdf/robinson_tr156.pdf


0 1 2 3 4 5

version of the SHRINK coder

0

20

40

60

80

100
fi
le

si
ze

(%
o
f

th
e

o
ri

g
in

a
l

fi
le

si
ze

)

Performance of SHRINK coders on a voice sample

Each version of the codec is defined by two functions: a coder shrink_v? and a
decoder grow_v? where ? stands for the version number; these two functions
transform data – a numpy array of type int16 – into stream – a bitstream –
and reciprocally, according to the following diagram:

shrink_v?
WAVE file ←→ data −−−−−→ stream ←→ SHRINK file

44.1 kHz, PCM array ←−−−−− BitStream
grow_v?

The aim of the lab session is to study the algorithms behind the design of
SHRINK and to implement the main features of this coder.

SHRINK Format Structure

The high-level structure of the SHRINK file format is given by:

Size Unit Content
89 bit header
? bit channel 1
? bit channel 2

< 8 bit zero-padding

2



where the content of the header is:

Size Unit Name Type Range/Value
6 byte magic ASCII, big endian "SHRINK"
1 byte version unsigned integer [0, ..., 5]
4 byte length unsigned integer, number of samples

big endian (per channel)
1 bit stereo boolean True or False

The format of the channel fields is version-dependent.

1. What is the purpose of the zero-padding in this context ?

2. Generate a SHRINK bitstream with no channel data (for example with
version 0 and a single channel). Make sure that the function grow_v0 from
the Python module audio.shrink can successfully decode this stream.

Amplitude Rice Coder

For each channel, the version 0 of the SHRINK compression algorithm:

• determines an appropriate value for the Rice parameter b (fixed bit width),
• encodes b as an unsigned 8-bit integer,
• encodes the channel array with this configuration of the Rice coder.

Table 3: SHRINK version 0 channel format.

Size Unit Content Type
8 bit Rice parameter unsigned integer
? bit sample values Rice encoded data

1. Explain why all Rice parameters fit into the range of unsigned 8-bit integers.

2. Consider a pure tone with frequency 440 Hz and maximal amplitude,
represented as an array A4 of 16-bits signed integers. Use the heuristic
provided in the rice coder to compute the “best” value of the Rice
parameter b for this data. Check the size of the coded data for Rice
parameters between b− 3 and b + 3.

3. Implement the coder function shrink_v0. Test it on the data A4. Did
we achieve any compression ? Why ? Generate a sound similar to A4

3



but more likely to be effectively compressed by shrink_v0, then test your
hypothesis.

Simple Prediction Coders

Convention: finite sequences of numeric values (x0, x1, ..., xN−1) – represented
as one-dimensional arrays of length N – are assimilated to infinite sequences
indexed on Z, denoted (xn)n, with a value of 0 outside of the initial index range.

The difference operator ∆ on sequences is defined by

∆(xn)n = (xn)n − (xn−1)n

1. Implement the restriction of ∆ to arrays as a function D (hint: use the
function numpy.diff). Make sure that the length of the output array is
the same as the input array. Is the operator ∆ invertible ? What about
the function D ? Implement the inverse function (hint: use the function
numpy.cumsum).
Implement version 1 of the SHRINK coder shrink_v1 that applies the
Rice coder to the difference of the audio PCM data:

Table 4: SHRINK version 1 channel format.

Size Unit Content Type
8 bit Rice parameter unsigned integer
? bit sample difference Rice encoded data

Check that the best Rice parameter for the difference values is smaller
than the best Rice parameter for the original sample values. Compute the
compression rate achieved on the data A4.

2. A predictive coder encodes the prediction residual en = xn − x̂n where x̂n

is a prediction of xn based on the past values of this sequence. Show that
version 0 and 1 of SHRINK are simple predictive coders. What is their
prediction of xn ?

3. Implement version 2 of the SHRINK coder shrink_v2 that replaces the
previous predictor schemes with a linear extrapolation of xn based on xn−1
and xn−2.

Table 5: SHRINK version 2 channel format.

Size Unit Content Type
8 bit Rice parameter unsigned integer

4



Size Unit Content Type
? bit linear extrap. residual Rice encoded data

Study the reduction of the Rice parameter for the new residual. Compute
the new compression rate achieved on the data A4.

Adaptative Polynomial Prediction Coder

For any n ∈ Z and any numbers xn−m−1, xn−m, . . . , xn−1, there is a single
polynomial Pn of order (at most) m such that:

Pn(n−m− 1) = xn−m−1, Pn(n−m) = xn−m, ..., Pn(n− 1) = xn−1.

The polynomial prediction of order m maps a sequence (xn)n to the sequence
(x̂n)n defined by x̂n = Pn(n).

1. Describe versions 1 and 2 of the SHRINK coders in terms of polynomial
prediction. Give in both cases an expression of the prediction residual
(en)n = (xn)n − (x̂n)n using the difference operator ∆. Use these results
to guess the expression of the residual for the polynomial prediction of
order m. Prove the result by an induction on the prediction order.

2. Show for a given prediction order m, there is a unique sequence of integers
(a1, a1, ..., am+1) such that for any n ∈ Z:

x̂n = a1xn−1 + · · ·+ am+1xn−m−1

Hence, the prediction residuals of a sequence of integers are integers.

3. Implement a function that, given a signal, computes the best Rice parameter
for the coding of its amplitude, then compute the best Rice parameter
for the coding of the residual by the polynomial prediction of order 0, 1,
etc. and stops as soon as this value stops to decrease, in order to determine
practically the “optimal” prediction order and the corresponding residual.
We use the convention that no prediction (coding of the amplitude values)
corresponds to a prediction order of −1.

4. Implement version 3 of the coder shrink_v3, with the following layout:

Table 6: SHRINK version 3 channel format.

Size Unit Content Type
? bit prediction order + 1 Rice encoded data.

Rice param. 3, unsigned.

5



Size Unit Content Type
8 bit Rice parameter p unsigned integer
? bit prediction residual Rice encoded data.

Rice param. p, signed.

Compute the new compression rate achieved on the data A4.

Framed Prediction

The properties of an audio signal may change completely in different sections
of its time frame but he still probably has some local consistency. We may
therefore search for the best predictor locally instead of globally and expect
higher compression ratios.

1. Implement the shrink_v4 coder that splits a signal into frames of 20
ms, and applies the channel data coder from the version 3 to each frame
separately.

2. This method has the drawback to include a “cold restart” of the algorithm
for each new frame: every frame analysis is done as if the previous values
of the signal were all zeros and the first predicted values are therefore
probably very inaccurate. Modify the previous coder into shrink_v5 to
solve that problem.

3. Study the performance of version 4 and 5 of the coders with respect to the
version 3 on smooth synthetic signals, such as A4, and on more realistic
signals, such as music or voice signals.

6


	About SHRINK
	SHRINK Format Structure
	Amplitude Rice Coder
	Simple Prediction Coders
	Adaptative Polynomial Prediction Coder
	Framed Prediction

