
Digital Audio Coding

Lab Session 1: Wave

Sébastien Boisgérault, Mines ParisTech

Feb. 12, 2015

This work is licensed under a Creative Commons Attribution 3.0 Unported
License (CC BY 3.0). You are free to share – to copy, distribute and transmit
the work – and to remix – to adapt the work – under the condition that the
work is properly attributed to its author.

A Word of Advice

This lab session will probably be much easier if you use the right tools for the
task at hand ; getting familiar with these tools is actually worth it as they will
also help you in the future lab sessions.

As a general guideline,

• use NumPy for scientific computing with arrays,

• use Matplotlib for data visualisation,

(both librairies are already integrated in the Spyder IDE)

• use audio.wave to read/write WAVE files,

• use audio.io to play/record sound data,

• use audio.bitstream to read/write binary data,

• use audio.frames to split/merge audio frames.

1

http://creativecommons.org/licenses/by/3.0/deed.en_US
http://creativecommons.org/licenses/by/3.0/deed.en_US
http://www.numpy.org/
http://matplotlib.org/
https://code.google.com/p/spyderlib/

Synthesis of Pure Tones

We denote A4 the analog audio signal defined by

A4(t) = cos(2π × 440.0× t), t ∈ R.

It’s a pure tone with unit amplitude, frequency 440.0 Hz, and no phase.

Let ∆f be the Compact Disc Digital Audio (CDDA) sample rate:

∆f = 44100 Hz.

1. Assign values to the Python variables df and dt that we use respectively to
denote the CDDA sampling rate in hertz and the CDDA sampling period
in seconds.

2. Create the increasing NumPy array t of the all times in [0, 3.0) that are
multiples of ∆t. Define the array A4 of sampled values of A4 at these times.

3. Plot two periods of this sampled signal against the time.

..
0

.
1

.
2

.
3

.
4

. time in ms: t ∈ Z/∆f × 1000.0.

−1

.

0

.

1

.

A
4
(t

)

4. Save the sampled signal A4 as a WAVE file named "A4.wav" and play it.

5. Automate and generalize: the name “A4” comes from the scientific pitch
notation, a convention that defines the frequency of symbols that are made
of a letter followed by a number identifying the pitch octave. The following
table displays such frequencies for the letter “A”:

Symbol f (Hz)
A0 27.5
A1 55.0
A2 110.0
A3 220.0
A4 440.0
A5 880.0
.
A9 14080.0
A10 28160.0

2

http://en.wikipedia.org/wiki/Scientific_pitch_notation
http://en.wikipedia.org/wiki/Scientific_pitch_notation

Implement a function make_tone that given such a symbol argument:

• returns the values of a 3-sec. audio sample,
• creates a WAVE file whose name is symbol + ".wav".

Sound Pressure Level and Loundness

1. Create the pure tones A0 to A10 and the corresponding WAVE files.

2. Sound power:

1. Implement a function SPL that given a 1-dimensional array x returns
the sound pressure level (SPL) of x in decibels:

L [dB] = 96.0 + 10 log10
〈
x2〉

where 〈y〉 is the mean value of y.
2. Check that the SPL of every tone is (approximately) the same.
3. What the is analytical formula of this shared value ?

3. Listening tests:

1. Play the audio files "A0.wav" to "A10.wav" in sequence.
2. Is the loudness of the sounds constant across the octaves ? What

does it mean ?
3. Does the frequency of "A10.wav" feel very different from the frequency

of "A9.wav" ? Can you make sense of that ?

WAVE Format Header Analysis

The WAVEform audio file format – or WAVE for brevity – is a Microsoft and IBM
digital audio file format. It is a subset of Microsoft’s Resource Interchange File
Format (RIFF) specification for multimedia file. The WAVE format supports
several types of compressions, but we will deal only with the uncompressed
format (also referred to as 16-bit linear PCM, for “Pulse Code Modulation”).

1. WAVE file names often have a ".wav" extension, but this is not strictly
mandatory: files content can be searched instead for a signature specific
to this format.
Search the web for a description of the WAVE header, identify the WAVE
file signature and implement an is_wave function that takes a filename
argument and returns True if the file is a WAVE file and False otherwise.

3

2. Implement a function wave_info that given a WAVE filename returns
informations about the audio data, namely:

• the number of channels
• the data sample rate.

This function should conform to the following example usage:

>>> wave_info("A4.wav")
{"num_channels": 1, "sample_rate": 44100}

Quantization and Signal-to-Noise Ratio

1. Load the data of the audio file "A4.wav" as an array of floats in the
[−1.0, 1.0] range named A4_wav.

2. Compute the quantization error – or quantization noise – e, defined as the
difference between A4_wav and the original array A4.

3. Compute the quantization signal-to-noise ratio (SNR) in decibels:

SNR [dB] = 10 log10 SNR2 where SNR2 =
〈
A42〉
〈e2〉

Fading: Frames and Windows

The tones that we have generated so far do not start or end smoothly and the
transition from one tone to another is not smooth either. Such fade in, fade out
and cross-fading may be implemented with windows.

1. Extend the make_tone function so that it takes an optional argument
window, a window factory : a function, that takes a length argument and
returns a window of this length. A window is a one-dimensional array that
is meant to be multiplied element-wise to the original signal.
Search the web for the definition of classic windows. Apply for example
the “Hanning window” on the pure tone A4 and listen to the result.

2. Consider the signals A0 to A10. Create a single “blended” (crossfaded)
signal that merges windowed versions of these signals in sequence, with a
1.5 sec (50%) overlap between successive signals.

4

3. What if the successive signals are actually frames extracted from a common
signal ? When does the merge between the frames reconstruct exactly the
original signal ? This condition is referred to as Constant-OverLap-Add
(or COLA).

4. Show that the standard Hanning window satisfies only roughly this condi-
tion. Define the window (factory) hanning2 that given a length n returns
the first n values of the hanning window of length n + 1. Show that this
window satifies the COLA condition with a high precision.

5

	A Word of Advice
	Synthesis of Pure Tones
	Sound Pressure Level and Loundness
	WAVE Format Header Analysis
	Quantization and Signal-to-Noise Ratio
	Fading: Frames and Windows

