
Complex-Step Differentiation

Sébastien Boisgérault, Mines ParisTech, under CC BY-NC-SA 4.0

November 28, 2017

Contents
Introduction 2

Computer Arithmetic 2
Floating-Point Numbers: First Contact 3
Binary Floating-Point Numbers . 4
Accuracy . 4

Significant Digits . 5
Functions . 6

Complex Step Differentiation 6
Forward Difference . 6
Round-Off Error . 7
Higher-Order Scheme . 8
Complex Step Differentiation . 10

Spectral Method 12
Computation Method . 12

Estimate and Accuracy . 12
Computation of the Estimate . 13

Error Analysis . 14
Round-off error . 15
Truncation error . 15

Appendix 16

Bibliography 16

1

mailto:Sebastien.Boisgerault@mines-paristech.fr
https://creativecommons.org/licenses/by-nc-sa/4.0

Introduction

You may already have used numerical differentiation to estimate the derivative
of a function, using for example Newton’s finite difference approximation

f ′(x) ≈ f(x+ h)− f(x)
h

.

The implementation of this scheme in Python is straightforward:

def FD(f, x, h):
return (f(x + h) - f(x)) / h

However, the relationship between the value of the step h and the accuracy of
the numerical derivative is more complex. Consider the following sample data:

Expression Value
exp′(0) 1
FD(exp, 0, 1e-4) 1.000050001667141
FD(exp, 0, 1e-8) 0.99999999392252903
FD(exp, 0, 1e-12) 1.000088900582341

The most accurate value of the numerical derivative is obtained for h = 10−8

and only 8 digits of the result are significant. For the larger value of h = 10−4,
the accuracy is limited by the quality of the Taylor development of exp at the
first order; this truncation error decreases linearly with the step size. For the
smaller value of h = 10−12, the accuracy is essentially undermined by round-off
errors in computations.

In this document, we show that complex-step differentiation may be used to
get rid of the influence of the round-off error for the computation of the first
derivative. For higher-order derivatives, we introduce a spectral method, a fast
algorithm with an error that decreases exponentially with the number of function
evaluations.

Computer Arithmetic

You may skip this section if you are already familiar with the representation of
real numbers as “doubles” on computers and with their basic properties. At the
opposite, if you wish to have more details on this subject, it is probably a good
idea to have a look at the classic “What every computer scientist should know
about computer arithmetic” (Goldberg 1991).

In the sequel, the examples are provided as snippets of Python code that often
use the Numerical Python (NumPy) library; first of all, let’s make sure that all

2

http://www.numpy.org/

NumPy symbols are available:

>>> from numpy import *

Floating-Point Numbers: First Contact

The most obvious way to display a number is to print it:

>>> print pi
3.14159265359

This is a lie of course: print is not supposed to display an accurate information
about its argument, but something readable. To get something unambiguous
instead, we can do:

>>> pi
3.141592653589793

When we say “unambiguous”, we mean that there is enough information in this
sequence of digits to compute the original floating-point number; and indeed:

>>> pi == eval("3.141592653589793")
True

Actually, this representation is also a lie: it is not an exact decimal representation
of the number pi stored in the computer memory. To get an exact representation
of pi, we can request the display of a large number of the decimal digits:

>>> def all_digits(number):
... print "{0:.100g}".format(number)
>>> all_digits(pi)
3.141592653589793115997963468544185161590576171875

Asking for 100 digits was actually good enough: only 49 of them are displayed
anyway, as the extra digits are all zeros.

Note that we obtained an exact representation of the floating-point number pi
with 49 digits. That does not mean that all – or even most – of these digits
are significant in the representation the real number of π. Indeed, if we use the
Python library for multiprecision floating-point arithmetic mpmath, we see that

>>> import mpmath
>>> mpmath.mp.dps = 49; mpmath.mp.pretty = True
>>> +mpmath.pi
3.141592653589793238462643383279502884197169399375

and both representations are identical only up to the 16th digit.

3

https://mpmath.googlecode.com/svn/trunk/doc/build/index.html

Binary Floating-Point Numbers

Representation of floating-point numbers appears to be complex so far, but it’s
only because we insist on using a decimal representation when these numbers are
actually stored as binary numbers. In other words, instead of using a sequence
of (decimal) digits fi ∈ {0, 1, . . . , 9} to represent a real number x as

x = ±(f0.f1f2 . . . fi . . .)× 10e

we should use binary digits – aka bits – fi ∈ {0, 1} to write:

x = ±(f0.f1f2 . . . fi . . .)× 2e.

These representations are normalized if the leading digit of the significand
(f0.f1f2 . . . fi . . .) is non-zero; for example, with this convention, the rational
number 999/1000 would be represented in base 10 as 9.99 × 10−1 and not as
0.999 × 100. In base 2, the only non-zero digit is 1, hence the significand of a
normalized representation is always (1.f1f2 . . . fi . . .).

In scientific computing, real numbers are usually approximated to fit into a 64-bit
layout named “double”1. In Python standard library, doubles are available as
instances of float – or alternatively as float64 in NumPy.

A triple of

• sign bit s ∈ {0, 1},

• biased exponent e ∈ {1, . . . , 2046} (11-bit),

• fraction f = (f1, . . . , f52) ∈ {0, 1}52.

represents a normalized double

x = (−1)s × 2e−1023 × (1.f1f2 . . . f52).

The doubles that are not normalized are not-a-number (nan), infinity (inf) and
zero (0.0) (actually signed infinities and zeros), and denormalized numbers. In
the sequel, we will never consider such numbers.

Accuracy

Almost all real numbers cannot be represented exactly as doubles. It makes
sense to associate to a real number x the nearest double [x]. A “round-to-nearest”
method that does this is fully specified in the IEE754 standard (see IEEE Task
P754 1985), together with alternate (“directed rounding”) methods.

1“Double” is a shortcut for “double-precision floating-point format”, defined in the IEEE
754 standard, see (IEEE Task P754 1985). A single-precision format is also defined, that uses
only 32 bits. NumPy provides it under the name float32.

4

To have any kind of confidence in our computations with doubles, we need to be
able to estimate the error in the representation of x by [x]. The machine epsilon,
denoted ε in the sequel, is a key number in this respect. It is defined as the gap
between 1.0 – that can be represented exactly as a double – and the next double
in the direction +∞.

>>> after_one = nextafter(1.0, +inf)
>>> after_one
1.0000000000000002
>>> all_digits(after_one)
1.0000000000000002220446049250313080847263336181640625
>>> eps = after_one - 1.0
>>> all_digits(eps)
2.220446049250313080847263336181640625e-16

This number is also available as an attribute of the finfo class of NumPy that
gathers machine limits for floating-point data types:

>>> all_digits(finfo(float).eps)
2.220446049250313080847263336181640625e-16

Alternatively, the examination of the structure of normalized doubles yields di-
rectly the value of ε: the fraction of the number after 1.0 is (f1, f2, . . . , f51, f52) =
(0, 0, . . . , 0, 1), hence ε = 2−52, a result confirmed by:

>>> all_digits(2**-52)
2.220446049250313080847263336181640625e-16

The machine epsilon matters so much because it provides a simple bound on the
relative error of the representation of a real number as a double. Indeed, for any
sensible rounding method, the structure of normalized doubles yields

|[x]− x|
|x|

≤ ε.

If the “round-to-nearest” method is used, you can actually derive a tighter bound:
the inequality above still holds with ε/2 instead of ε.

Significant Digits

This relative error translates directly into how many significant decimal digits
there are in the best approximation of a real number by a double. Consider the
exact representation of [x] in the scientific notation:

[x] = ±(f0.f1 . . . fp−1 . . .)× 10e.

We say that it is significant up to the p-th digit if

|x− [x]| ≤ 10e−(p−1)

2 .

5

On the other hand, the error bound on [x] yields

|x− [x]| ≤ ε

2 |x| ≤
ε

2 × 10e+1.

Hence, the desired precision is achieved as long as

p ≤ − log10 ε/2 = 52 log10 2 ≈ 15.7.

Consequently, doubles provide a 15-th digit approximation of real numbers.

Functions

Most real numbers cannot be represented exactly as doubles; accordingly, most
real functions of real variables cannot be represented exactly as functions op-
erating on doubles either. The best we can hope for are correctly rounded
approximations. An approximation [f] of a function f of n variables is correctly
rounded if for any n-uple (x1, . . . , xn), we have

[f](x1, . . . , xn) = [f([x1], . . . , [xn])].

The IEEE 754 standard (see IEEE Task P754 1985) mandates that some functions
have a correctly rounded implementation; they are:

add, substract, multiply, divide, remainder and square root.

Other standard elementary functions – such as sine, cosine, exponential, log-
arithm, etc. – are usually not correctly rounded; the design of computation
algorithms that have a decent performance and are provably correctly rounded is
a complex problem (see for example the documentation of the Correctly Rounded
mathematical library).

Complex Step Differentiation

Forward Difference

Let f be a real-valued function defined in some open interval. In many concrete
use cases, we can make the assumption that the function is actually analytic
and never have to worry about the existence of derivatives. As a bonus, for any
real number x in the domain of the function, the (truncated) Taylor expansion

f(x+ h) = f(x) + f ′(x)h+ f ′′(x)
2 h2 + · · ·+ f (n)

n! h
n +O(hn+1)

6

http://lipforge.ens-lyon.fr/www/crlibm/
http://lipforge.ens-lyon.fr/www/crlibm/

is locally valid2. A straighforward computation shows that

f ′(x) = f(x+ h)− f(x)
h

+O(h)

The asymptotic behavior of this forward difference scheme – controlled by the
term O(h1) – is said to be of order 1. An implementation of this scheme is
defined for doubles x and h as

FD(f, x, h) =
[

[[f]([x] + [h])− [f](x)]
[h]

]
.

or equivalently, in Python as:

def FD(f, x, h):
return (f(x + h) - f(x)) / h

Round-Off Error

We consider again the function f(x) = exp(x) used in the introduction and
compute the numerical derivative based on the forward difference at x = 0 for
several values of h. The graph of h 7→ FD(exp, 0, h) shows that for values of
h near or below the machine epsilon ε, the difference between the numerical
derivative and the exact value of the derivative is not explained by the classic
asymptotic analysis.

If we take into account the representation of real numbers as doubles however,
we can explain and quantify the phenomenon. To focus only on the effect of the
round-off errors, we’d like to get rid of the truncation error. To achieve this, in
the following computations, instead of exp, we use exp0, the Taylor expansion
of exp of order 1 at x = 0; we have exp0(x) = 1 + x.

Assume that the rounding scheme is “round-to-nearest”; select a floating-point
number h > 0 and compare it to the machine epsilon:

• If h� ε, then 1 + h is close to 1, actually, closer to 1 than from the next
binary floating-point value, which is 1 + ε. Hence, the value is rounded to
[exp0](h) = 1, and a catastrophic cancellation happens:

FD(exp0, 0, h) =
[

[[exp0](h)− 1]
h

]
= 0.

• If h ≈ ε, then 1 + h is closer from 1 + ε than it is from 1, hence we have
[exp0](h) = 1 + ε and

FD(exp0, 0, h) =
[

[[exp0](h)− 1]
h

]
=
[ε
h

]
.

2Bachmann-Landau notation. For a real or complex variable h, we write ψ(h) = O(φ(h))
if there is a suitable deleted neighbourhood of h = 0 where the functions ψ and φ are defined
and the inequality |ψ(h)| ≤ κ|φ(h)| holds for some κ > 0. When N is a natural number, we
write ψ(N) = O(φ(N)) if there is a n such that ψ and φ are defined for N ≥ n and for any
such N, the inequality |ψ(N)| ≤ κ|φ(N)| holds for some κ > 0.

7

10−16 10−12 10−8 10−4 100

0

1

2

Graph of h 7→ FD(exp, 0, h)

FD(exp, 0, h)

[exp′(0)]

[ϵ/h]

Figure 1: Forward Difference Scheme Values.

• If ε� h� 1, then [1 + h] = 1 + h± ε(1 + h) (the symbol ± is used here
to define a confidence interval3). Hence

[[exp0](h)− 1] = h± ε± ε(2h+ ε+ εh)

and [
[[exp0](h)− 1]

h

]
= 1± ε

h
+ ε

h
(3h+ 2ε+ 3hε+ ε2 + ε2h)

therefore
FD(exp0, 0, h) = exp′0(0)± ε

h
± ε′, ε′ � ε

h
.

Going back to FD(exp, 0, h) and using a log-log scale to display the total error,
we can clearly distinguish the region where the error is dominated by the round-
off error – the curve envelope is log(ε/h) – and where it is dominated by the
truncation error – a slope of 1 being characteristic of schemes of order 1.

Higher-Order Scheme

The theoretical asymptotic behavior of the forward difference scheme can be
improved, for example if instead of the forward difference quotient we use a

3Plus-minus sign and confidence interval. The equation a = b±c should be interpreted
as the inequality |a− b| ≤ |c|.

8

10−16 10−12 10−8 10−4 100

10−12

10−8

10−4

100

Graph of h 7→ [|FD(exp, 0, h) − exp′(0)|]

FD error

Figure 2: Forward Difference Scheme Error.

central difference quotient. Consider the Taylor expansion at the order 2 of
f(x+ h) and f(x− h):

f(x+ h) = f(x) + f ′(x)(+h) + f ′′(x)
2 (+h)2 +O

(
h3)

and
f(x− h) = f(x) + f ′(x)(−h) + f ′′(x)

2 (−h)2 +O
(
h3) .

We have
f ′(x) = f(x+ h)− f(x− h)

2h +O(h2),

hence, the central difference scheme is a scheme of order 2, with the
implementation:

CD(f, x, h) =
[

[[f]([x] + [h])− [f]([x]− [h])]
[2× [h]]

]
.

or equivalently, in Python:

def CD(f, x, h):
return 0.5 * (f(x + h) - f(x - h)) / h

The error graph for the central difference scheme confirms that a truncation
error of order two may be used to improve the accuracy. However, it also shows
that a higher-order actually increases the region dominated by the round-off
error, making the problem of selection of a correct step size h even more difficult.

9

10−16 10−12 10−8 10−4 100

10−12

10−8

10−4

100

Graph of h 7→ [|CD(exp, 0, h) − exp′(0)|]

FD error
CD error

Figure 3: Central Difference Scheme Error.

Complex Step Differentiation

If the function f is analytic at x, the Taylor expansion is also valid for (small
values of) complex numbers h. In particular, if we replace h by a pure imaginary
number ih, we end up with

f(x+ ih) = f(x) + f ′(x)ih+ f ′′(x)
2 (ih)2 +O(h3)

If f is real-valued, using the imaginary part yields:

Im
(
f(x+ ih)

h

)
= f ′(x) +O(h2).

This is a method of order 2. The straightforward implementation of the complex-
step differentiation is

CSD(f, x, h) =
[

Im([f]([x] + i[h]))
[h]

]
.

or equivalently, in Python:

def CSD(f, x, h):
return imag(f(x + 1j * h)) / h

10

The distinguishing feature of this scheme: it almost totally gets rid of the
truncation error. Indeed, let’s consider again exp0; when x and y are floating-
point real numbers, the sum x+ iy can be computed with any round-off, hence,
if h is a floating-point number, [exp0](ih) = [1 + ih] = 1 + ih and consequently,
Im([exp0](ih)) = h, which yields

CSD(exp0, 0, h) =
[
h

h

]
= 1 = exp′0(0).

10−16 10−12 10−8 10−4 100
10−∞

...

10−16

10−12

10−8

10−4

100

Graph of h 7→ [|CSD(exp, 0, h) − exp′(0)|]

CD error
CSD error
ϵ = 2−52

Figure 4: Complex Step Difference Scheme Error.

11

Spectral Method

The complex step differentiation is a powerful method but it also has limits. We
can use it to compute the first derivative of a real analytic function f, but not its
second derivative because our estimate x 7→ CSD(f, x, h) of the first derivative
is only available for real values of x, hence the method cannot be iterated. We
cannot use it either if we know that f is analytic but not real-valued.

We introduce in this section an alternate method to compute first, second and
higher-order derivatives of – real or complex-valued – analytic functions. More
details may be found in (Fornberg 2006) and (Trefethen 2000).

Computation Method

Let f be a function that is holomorphic in an open neighbourhood of x ∈ R that
contains the closed disk with center x and radius r. In this disk, the values of f
can be computed by the Taylor series

f(z) =
+∞∑
n=0

an(z − x)n, an = f (n)(x)
n! .

The open disk of convergence of the series has a radius that is larger than r,
thus the growth bound of the sequence an is smaller than 1/r. Hence,

∃κ > 0, ∀n ∈ N, |an| ≤ κ r−n.

Let h ∈ (0, r) and N be a positive integer; let fk be the sequence of N values of
f on the circle with center x and radius h defined by

fk = f(x+ hwk), w = e−i2π/N , k = 0, . . . , N − 1.

Estimate and Accuracy

The values fk can be computed as

fk =
+∞∑
n=0

an(hwk)n =
N−1∑
n=0

[+∞∑
m=0

an+mNh
n+mN

]
wk(n+mN).

Notice that we have wk(n+mN) = wkn(wN)km = wkn. Hence, if we define

cn = anh
n + an+Nh

n+N + · · · =
+∞∑
m=0

an+mNh
n+mN ,

12

we end up with the following relationship between the values fk and cn:

fk =
N−1∑
n=0

wkncn.

It is useful because the coefficients cn/hn provide an approximation of an:∣∣∣an − cn
hn

∣∣∣ ≤ κr−n +∞∑
m=1

(h/r)mN = κr−n
(h/r)N

1− (h/r)N

There are two ways to look at this approximation: if we freeze N and consider
the behavior of the error when the radius h approaches 0, we derive

an = cn
hn

+O(hN)

and conclude that the approximation of an is of order N with respect to h; on
the other hand, if we freeze h and let N grow to +∞, we obtain instead

an = cn
hn

+O(e−αN) with α = − log(h/r) > 0,

in other words, the approximation is exponential with respect to N.

Computation of the Estimate

The right-hand side of the equation

fk =
N−1∑
n=0

wkncn.

can be interpreted as a classic matrix-vector product; the mapping from the
cn to the fk is known has the discrete Fourier transform (DFT). The inverse
mapping – the inverse discrete Fourier transform – is given by

cn = 1
N

N−1∑
n=0

w−knfk.

Both the discrete Fourier transform and it inverse can be computed by algorithms
having a O(N logN) complexity (instead of the O(N2) of the obvious method),
the aptly named fast Fourier transform (FFT) and inverse fast Fourier transform
(IFFT). Some of these algorithms actually deliver the minimal complexity only
when N is a power of two, so it is safer to pick only such numbers if you don’t
know exactly what algorithm you are actually using.

The implementation of this scheme is simple:

13

from numpy.fft import ifft
from scipy.misc import factorial

def SM(f, x, h, N):
w = exp(-1j * 2 * pi / N)
k = n = arange(N)
f_k = f(x + h * w**k)
c_n = ifft(f_k)
a_n = c_n / h ** n
return a_n * factorial(n)

10−16 10−12 10−8 10−4 100

radius h

10−16

10−12

10−8

re
la

tiv
e

er
ro

r

Accuracy of f (n)(0) ≃ SM(f, 0, h, N)[n] for f(z) = 1/(1 − z)

N = 32

n = 1

n = 2

n = 3

n = 4

Figure 5: Spectral Method Error

Error Analysis

The algorithm introduced in the previous section provides approximation methods
with an arbitrary large order for n-th order derivatives. However, the region in
which the round-off error dominates the truncation error is large and actually
increases when the integer n grows. A specific analysis has to be made to control
both kind of errors.

We conduct the detailled error analysis for the function

f(z) = 1
1− z

at x = 0 and attempt to estimate the derivatives up to the fourth order. We
have selected this example because an = 1 for every n, hence the computation

14

of the relative errors of the results are simple.

Round-off error

We assume that the main source of round-off errors is in the computations of the
fk. The distance between fk and its approximation [fk] is bounded by |fk| × ε/2;
the coefficients in the IFFT matrix are of modulus 1/N, hence, if the sum is
exact, we end up with an absolute error on cn bounded by M(h)× ε/2 with

M(h) = max
|z−x|=h

|f(z)|.

Hence the absolute error on an = cn/h
n is bounded by M(h)ε/(2hn). Using the

rough estimate |an| ' κr−n, we end up with a relative error for an controlled by(
M(h)
κ

ε

2

)(
h

r

)−n
On our example, we can pick M(h) = 1/(1 − h), κ = 1, and r = 1, hence the
best error bound we can hope for is obtained for the value of h that minimizes
1/((1− h)hn)ε/2; the best h and round-off error bound are actually

h = n

n+ 1 and round-off(an) ≤ (n+ 1)n+1

nn
ε

2 .

The error bound is always bigger than the structural relative error ε/2 and
increases with n, hence the worst case is obtained for the highest derivative order
that we want to compute, that is n = 4. If for example we settle on a round-off
relative error of 1000 times ε/2, we can select h = 0.2.

Truncation error

We have already estimated the difference between an and cn/h
n; if we again

model |an| as κr−n, the relative error of this estimate is bounded by

(h/r)N
1− (h/r)N '

(
h

r

)N
,

hence to obtain a truncation error of the same magnitude than the truncation
error – that is 1000× ε/2, we may select N such that 0.2N ≤ 1000× ε/2, that is

N ≥
⌈

log(1000× ε/2)
log 0.2

⌉
= 19.

We pick for N the next power of two after 19; the choices h = 0.2 and N = 32
yield the following estimates of the first 8 n-th order derivatives of f.

15

n f (n)(0) estimate relative error
0 1.0000000000000000 0.0
1 0.9999999999999998 2.2× 10−16

2 1.9999999999999984 7.8× 10−16

3 6.0000000000000284 4.7× 10−15

4 23.999999999999996 1.1× 10−16

5 120.00000000001297 1.1× 10−13

6 720.00000000016007 2.2× 10−13

7 5040.0000000075588 1.5× 10−12

Appendix

Augustin-Louis is the proud author of a very simple Python CSD code fragment
that people cut-and-paste in their numerical code:

from numpy import imag
def CSD(f, x, h=1e-100):

return imag(f(x + 1j * h)) / h

One day, he receives the following mail:

Dear Augustin-Louis,

We are afraid that your Python CSD code is defective; we used it
to compute the derivative of f(x) =

√
|x| at x = 1 and got 0. We’re

pretty sure that it should be 0.5 instead.

Yours truly,

Isaac & Gottfried Wilhelm.

1. Should the complex-step differentiation method work in this case?

2. How do you think that Isaac and Gottfried Wilhelm have implemented
the function f? Would that explain the value of CSD(f, x=1.0) that they
report?

3. Can you modify the CSD code fragment to “make it work” with the kind of
function and implementation that Isaac and Gottried Wilhelm are using?
Of course, you cannot change their code, only yours.

Bibliography

Fornberg, Bengt. 2006. “Numerical Differentiation of Analytic Functions.”
ACM Trans. Math. Softw. 7 (4): 512–26. http://dblp.uni-trier.de/db/

16

http://dblp.uni-trier.de/db/journals/toms/toms7.html#Fornberg81

journals/toms/toms7.html#Fornberg81.

Goldberg, David. 1991. “What Every Computer Scientist Should Know About
Floating-Point Arithmetic.” ACM Computing Surveys 23 (1): 5–48. http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.6768.

IEEE Task P754. 1985. ANSI/IEEE 754-1985, Standard for Binary Floating-
Point Arithmetic. New York, NY, USA: IEEE.

Trefethen, Lloyd N. 2000. Spectral Methods in Matlab. Vol. 10. Siam.
http://www.mathworks.ir/downloads/english/Spectral%20Methods%
20in%20MATLAB.pdf.

17

http://dblp.uni-trier.de/db/journals/toms/toms7.html#Fornberg81
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.6768
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.6768
http://www.mathworks.ir/downloads/english/Spectral%20Methods%20in%20MATLAB.pdf
http://www.mathworks.ir/downloads/english/Spectral%20Methods%20in%20MATLAB.pdf

	Introduction
	Computer Arithmetic
	Floating-Point Numbers: First Contact
	Binary Floating-Point Numbers
	Accuracy
	Significant Digits
	Functions

	Complex Step Differentiation
	Forward Difference
	Round-Off Error
	Higher-Order Scheme
	Complex Step Differentiation

	Spectral Method
	Computation Method
	Estimate and Accuracy
	Computation of the Estimate

	Error Analysis
	Round-off error
	Truncation error

	Appendix
	Bibliography

