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Problem R

Preamble. Let Q) be an open subset of C. For any r > 0, we denote 2,. the set
of points of C whose distance to the complement of Q2 is larger than r:

Q,={2€C|d(C\Q)>r}

1. Show that €2, is an open subset of €2 and that 2 = U,.~q{2,..

2. Assume that €2 is connected. Is Q, necessarily connected? (Hint: consider
for example Q@ = {z € C | |[Imz| < |Rez| + 1} and r = 1).

3. Show that if z € C\ §,, there is a w € C\ Q such that the segment [w, 2] is
included in C\ £2,.. Deduce from this property that if € is simply connected,
then €2, is also simply connected. Is the converse true?

4. Show that if  is bounded and simply connected, C\ 2 is connected. (Hint:
assume that € is bounded but that C \ Q is disconnected, then introduce
a suitable dilation of this complement).

From now on, 2 is a bounded open subset of C. Let F be a class of holomorphic
functions defined on Q (or a superset of ). A holomorphic function f: Q — C
has uniform approximations in F if

A~

Ve>0,3feF,VzeQ, |f(z) - f(2)| <e

5. Let f : © — C be a holomorphic function and let a € C\ Q. Assume
that f has uniform approximations in the class of functions defined and
holomorphic on C\ {a}. Show that if |a| is large enough, f has uniform
approximations among polynomials.

6. Show that for any non-empty bounded open subset €2 of C, there is a holo-
morphic function f : 2 — C which doesn’t have uniform approximations
among polynomials (Hint: consider z — 1/(z — a) for some suitable choice
of a).
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A holomorphic function f : Q@ — C has locally uniform approximations in F if
for any r > 0, its restriction to any €2, has uniform approximations in F:

Ve>0,¥Yr>0,3feF, VzeQ, |f(2)— fz) <e

7. Show that if 2 is not simply connected, there is a holomorphic function
f : © — C which has no locally uniform approximations among polynomials
(Hint: consider f : z + 1/(z—a) for some suitable choice of a then compare

Af(z)dz and Lf(z)dz

for some suitable closed rectifiable path ).
From now on, we assume that () is simply connected.

Let f:Q — C and let r > 0. We define the function x, : C\ Q — {0,1} by:

e xr(2) = 1if for every e > 0, there is a holomorphic function fz defined on
C\ {z} such that |f — f.| < eon Q,,

e xr(2) = 0 otherwise.

8. Show that if some points z and w of C\ Q satisfy x,(z) =1 and |w — z| <
r/2 then x,(w) = 1 (Hint: first, prove that the open annulus A :=
A(w,r/2,400) satisfies A C C\ {z} and Q, C A).

9. Prove that x, is locally constant then show that if x,(a) = 1 for some
a € C\Q, then x,(z) =1 for every z € C\ Q.

10. Assume that f : € — C has locally uniform approximations among
holomorphic functions defined on C\ {a} for some a € C\ Q. Show that f
has locally uniform approximations among polynomials.

11. Let f: C\{ai,...,an} — C be holomorphic (all the ay, are distincts). Show
that there are holomorphic functions f : C\ {ax} - Cfor k=1,...,n
such that

N

VZGC\{ala"'aan}a f(z):fl(z)++fn(z)

Prove the following corollary: if a function f : ) — C has locally uniform
approximations among holomorphic functions defined on C\ {aq,...,a,}
for some aq,...,a, € C\ Q, then f has locally uniform approximations
among polynomials.



Problem L

The ray with origin a € C and direction u € C* is the function'

v:teRy — a+tu.

Let f: Q — C be a holomorphic function defined on some open subset Q of C
that contains the image v(R4) of the ray v. The Laplace transform £,[f] of f
along v at s € C is given by

L) = | FOy()e By (¢) dt

(we consider that this integral is defined when its integrand is summable). This
definition generalizes the classic Laplace transform L£[f] since £+[f] = L[f] when
~(t) =t (that is when @ = 0 and u = 1).

We assume that there are some x > 0 and o € R such that

Vzey(Ry), |f(2)] < re. (1)
1. Show that if v(t) = a + tu and u(t) = a + t(Au) for some X > 0, then
Lulfl = £4[1]

(Reminder: two functions are equal when the have the same domain of
definition and the same values in this shared domain.)

2. Characterize geometrically the set
II(u,0) = {s € C | Re(su) > olul|}
and show that £,[f] is defined and holomorphic on II(u, o).

3. Let U be an open subset of C*. We assume that bound (1) is valid for
every u € U (for a given origin a and fixed values of x and o). Show that
for any s € C, the set U, of directions u € U such that s € II(u, o) is open
and that the function u € Us — L£,[f](s) is holomorphic (Hint: show that
the complex-differentiation under the integral sign theorem is applicable).

4. Show that the derivative of £,[f](s) with respect to w is zero (Hint: the
result of question 1 may be used).

The exponential integral Ey(x) is defined for 2 > 0 by

+oo et
El(.”[:) :/ —dt.
T

t

IThis notation emphasizes that the complex number ~(t) depends on ¢; however it also
depends implicitly on some a and u that are usually clear from the context. Feel free to use a
more explicit notation if you feel that it is beneficial.




5. Compute the (classic) Laplace transform F of

1
teRy —» ——
M

and give a formula for Fy(z) that depends on F(x). Prove that E; has a
unique holomorphic extension to the open right half-plane {s € C | Re(s) >

0}.
From now on, we study the case of

1
f:zE(C\{fl}r—>27_'_1

witha=0,0 =0and U = {u € C| Re(u) > 0}.

6. Show that there is a k > 0 such that (1) is valid for every u € U. Charac-
terize geometrically the set Us; show that it is non-empty when s € C\R_.

Let s € C\ R_. We define
G(s) = Ly[f](s) if ueUs and v:te€ Ry — tu.

Note that this definition is a priori ambiguous since several u € U exist for a
given value of s. For any ug € C* and u; € C* and for any 6 € [0, 1], we denote

ug = (1 — Q)ug + Ouy
and whenever ug # 0, we denote -y the ray of origin ¢ = 0 and direction uyg.

7. Let s € C\ R_. Show that if uyp € U, and u; € Uy then for every 6 € [0, 1],
ug € Ug and that

1
L, [f(5) = Lo f1(s) = / & 11)ts) do.

Conclude that the definition of G is unambiguous.

8. We search for a new expression of the difference L., [f](s) — L, [f](s) to
build an alternate proof for the conclusion of the previous question.

Let again s € C\R_, ug € Us and uy € Us; let 7 > 0 and ~§ and ~] be
the paths defined by

vy it €10,1] = vo(tr) and ~f : t € [0,1] — v (tr)

Show that

L, [f1(5) = Lao[f](s) = lim / f(z)e™** dz where pr = (76)[(77)

r——+4oo

Conclude again that the definition of G is unambiguous (Hint: “close” the
path p, and use Cauchy’s integral theorem).

9. Prove that F; has a unique holomorphic extension to C\ R_.



Problem R — Answers

1. (1.5pt) If z € Q,, then d(z,C\ Q) > r > 0. Since any point z of C\
satisfies d(z,C\ Q) = 0, we have C\ Q C C\ Q, and thus Q, C Q.

For any z € Q,, the number € = d(z,C\ ) — r is positive. If |w —z| <€
then for any v € C\ Q, |z —v| > d(2,C\ Q) and

lw—=v| >z —v|—|w—2z>d(z,C\Q) —e=r.

Consequently D(z,¢e) C 2 and 2 is open.

Finally, if z € Q, since Q is open, d = d(z,C\ Q) > 0, thus if r = d/2, the
point z belongs to €2,.. Consequently, 2 = U,~q€2,..

2. (1pt) Let @ ={z € C| [Im 2| < |Rez|+1}. This set is open: the function
¢p:2€C— |Rez|+1—|Imz| €R

is continuous and €2 is the pre-image of the open set R} by ¢. Now, for
any purely imaginary number iy of €2, since |iy —i| < 1 or |iy +i| < 1, we
have d(iy,C\ Q) < 1. Therefore, no such point belongs to ;. On the
other hand, d(—2,C\ Q) = d(—2,C\ Q) = 3v/2/2 > 1 and hence —2 € ;
and 2 € Q.

Assume that € is connected. Since it is open, it is path-connected:
there is a continuous function ~ : [0,1] — €4 that joins —2 and 2. By the
intermediate value theorem, there is a t € |0, 1] such that Rey(¢) = 0. Since
~(t) € Q1, we have a contradiction. Consequently, €27 is not connected.

3. (2.5pt) By definition of ©,, its complement satisfies
C\Q, ={2€C|d(2,C\Q) <r}.

Thus, if z € C\ Q,, since C\ Q is closed, there is a w € C\ Q such
that |z —w| < r. Since for any A € [0,1], the point zy = Aw + (1 — A\)z
satisfies |2y —w| = (1 — A)|z — w| < 7, we also have z, € C\ Q,. Hence,
[w,z] C C\ Q,.

Assume that  is simply connected. Let z € C\ £, and let v be a closed
path of Q,; since Q, C 0, 7 is also a closed path of Q. Let w € C\ Q
such that [w,z] C C\ ,. Since [w, z] is connected and the function
&€ C\Q, — ind(y,&) is locally constant, ind(vy, z) = ind(y,w). Since
is simply connected, ind(y,w) = 0. Hence, Q, is simply connected.

Alternatively, assume that €2, is multiply connected. Let C\ 2, = K UL
where K is bounded and non-empty and d(K,L) > 0. Since Q, C 9,
C\QCC\Q,. Let K/ = KN (C\ Q) and L' = LN (C\ ). Clearly,
C\Q =K' UL K'is bounded and d(K’,L") > 0. Now, let z € K and
let w € C\ Q such that [w,z] C C\ Q, = K UL. Every connected C



subset of K U L that contains a point of K is included in K since for any
r < d(K, L), the dilation C + B(0,r) doesn’t intersect L. Since [w, 2] is a
connected subset of K UL and z € K, we have [w, z] C K, thus K’ is also
non-empty. Finally, Q is multiply connected.

The converse result is false: for any open subset 2 which is bounded
and not simply connected, for r large enough, 2, = @ which is simply
connected.

. (2.5pt) Assume that C\ €2 is disconnected. Since Q is bounded, for r
large enough, the annulus A(0, r + 0o), which is connected, is a subset of
C\ Q. Consider a dilation of C\ © which is not (path-)connected; let Vi
be the component of this dilation that contains the annulus above, while
V is the (non-empty) union of the other components of the dilation. By
construction, V and V, are open and disjoints and V is bounded. The set

K=(C\Q) NV =(C\Q)\ Vs
is closed, non-empty and bounded; with
L=(C\Q)NVe =(C\Q)\V,

which is closed, we have C\ Q@ = KU L. Thus C\ © is multiply connected.

. (1.5pt) Since Q is bounded, there is a r > 0 such that Q C K = D(0,r).
Let a € C such that |a| > 7; let € > 0 and f : C\ {a} be a holomorphic
function such that |f — f| < /2 on Q. Since K is a compact subset
of D(0,al) € C\ {a}, the Taylor series expansion 3. a,(z — ¢)" of f in
D(0,]a|) is uniformly convergent in K, thus there is a m € N such that
the polynomial

p(z) =D an(z—o)"
n=0
satisfies | f- p| < €/2in K and hence in Q. Consequently,
VzeQ, [f(z) = p)| < 1f(z) = @) +|f(z) = p(z)| < e

. (1.5pt) Assume that there is a polynomial p such that |f —p| <1 on €.
Since € is bounded, the set K = 2 is compact and since p is continuous
on K, it is bounded on Q. Given that

1f ()] < [f(2) = p(2)| + |p(2)]
the function f is necessarily bounded on €.

Now all we have to do is to find a holomorphic function on €2 which is not
bounded. Consider f : z+ 1/(z —a) where a is a point of the boundary of
Q (such a point exists since Q # @ and Q # C); since 2 is open, a & Q and



the function f is defined and holomorphic on 2. By construction there is
a sequence z, € ) such that z, — a and thus

1
)] = “ oo,
Zn — @

thus f is not bounded on €.

. (2pt) If Q is not simply connected, there is a closed rectifiable path ~ of
2 and a point a € C\ © which is in the interior of v, that is ind(v, a) is a
non-zero integer. The function z — 1/(z — a) is defined and holomorphic
on 2. Additionally

% A f(z)dz = ind(y,a) € Z*.

Since the distance between ([0, 1]) and the complement of €2 is positive,
there is a r > 0 such that v([0,1]) C Q,. Now if f is a polynomial such

that |f — f] < eon Q,,
1 A
— )d
27r/f :

S ECLE

By Cauchy’s theorem (the local version, in C), the first integral in the
right-hand side is zero. By the M-L inequality, the second one is dominated
by (€/2m) x (7). Thus for € < 27/4(), we would have

% L f(z)dz

Consequently z — 1/(z — a) is holomorphic on §2 but cannot be locally
uniformly approximated by polynomials.

\ [ -

<1

. (3pt) The condition |w — z| < r/2 yields
{z} € D(w,r/2) = C\ A(w,r/2,+00).

or equivalently, A = A(w,r/2,+00) C C\ {z}. Additionally, any v € Q,
satisfies d(v,C\ 2) > r and in particular |v — z| > r. Since |w — z| < r/2,

[v—w|>v—z—|lw—2z2>r—r/2=r/2,
hence v € A(w,r/2,+00). Consequently, Q, C A.

Since x,(z) = 1, for any € > 0, there is a function f. holomorphic in C\ {z}
such such that |f — f| < €/2 on Q,. Now, since the annulus A is included
in the domain of definition of f,, we have the Laurent series expansion

—+oo

Vve A, f.(v) = Z an(v —w)™.

n=—oo



10.

11.

This expansion is locally uniformly convergent; since €, is compact and
included in A, there is a natural number m such that the function f,,(v) :=
S an(v—w)™ — which is holomorphic on C\ {w} — satisfies | f, — fi,| <

€¢/2 on Q,.. Finally, on €2,., we have

If = ful SIf = Fl +1fs = ful <e/2+¢/2 =

and thus y(w) = 1.

. (1pt) We know that if x(z) =1 and |w — z| < r/2, then x(w) = 1. Now,

by contraposition of this property, if x(w) =0 and |w — z| < /2, we have
X(z) = 0. Therefore x is locally constant. Now since € is simply connected
and bounded, by question 4, C \ Q is connected. Since x : C\ Q@ — {0,1}
is locally constant, if x(a) =1 for some a € C\ 2, x =1 0on C\ Q.

(1pt) If f: Q — C has locally uniform approximations among the holo-
morphic functions defined on C\ {a}, then for any r > 0 x,-(a) = 1. By the
previous question, x,(b) =1 for any b € C\ © and thus f has locally uni-
form approximations among the holomorphic functions defined on C \ {b}.
We can select a b that is arbitrarily large, thus by question 5, f has locally
uniform approximations among polynomials.

(4pt) We proceed by induction. The result is plain if n = 1; now assume
that the result holds for a given n > 1 and let f :C\{a1,...,an,an11+ — C
be holomorphic. Since a,41 is an isolated singularity of f, there is a r > 0
such that A(an+1,0,7) is a non-empty annulus included in the domain of
definition of f. Let Zz_ioo bi(z — ans1)* be the Laurent series expansion
of f in this annulus and define

-1
frr( = Y bz~ )

n=—oo

Since there are only negative powers, the sum is convergent (and holomor-
phic) in C\ {an+1}. Now since in the annulus

+oo
F(2) = faa(2) = D br(z = anin)

n=0

the point a,41 is a removable singularity of the function f - fk that may
thus be extended holomorphically to C\ {ai,...,a,}. We may apply
the induction hypothesis to this extension; we get holomorphic functions
fr:C\{ar} — C for k=1,...,n such that

N A

Vze (C\{ala"'7an+1}v f(Z) _fn-‘rl(z) = fl(z)++fn(2)

which is the induction hypothesis at stage n + 1.



Now the corollary: assume that for any r > 0 and any € > 0, there is a
holomorphic function f : C\ {ai,...,a,} — C such that |f — f| <€/2 in
Q. Let fr, : C\ {ar} — Cfor k=1,...,n be such that

VzeC\{a1,...,an}, f(2) = fi(2) 4+ + ful2).

Since the restriction of every fk to € is locally uniformly approximated by
holomorphic functions on C \ {ax}, by question 9, it is locally uniformly
approximated by polynomials, so there is a polynomial pj, such that | fk —
Pl < €/2n on Q.. Let p =13 ,_, p; on O, we have

[f=pl <If=FI+ D Ife—pel <e
k=1

Thus, f is locally uniformly approximated by polynomials.

Problem L — Answers
1. (1pt) Since
Lulfl)= [ flat tAu)e” @A (\u) dt,
+
if £,,[f](s) is defined, the change of variable T = At yields
L,[f1(s) = i f(a+Tu)es@F™Wy dr,
‘

thus £x[f](s) is defined and £,[f](s) = L1[f](s). Conversely, if L[f](s)
is defined, the same argument with 1/X instead of A shows that £,[f](s)
is also defined (and obviously £,[f](s) = Lx[f](s)).

2. (2pt) The set II(u, o) is an open half-plane: if u = |ule?® and s = = + iy,
then the condition Re(su) > o|u| is equivalent to

xcosf —ysinf > o.

The Laplace transform of f along v satisfies
Ly[fl(s) = [ fla+twe Tyt
R4

= (e7%) f(a+ tu)e” Wt gt
Ry

and thus
Ly[f](s) = (e "u)L[t = f(a+ tu)(su).



The function t € Ry +— f(a + tu) is locally integrable (it is continuous
since f is holomorphic) and since for any ¢ > 0

—laf +tlu| <fa +tu| < |af + tlul,
we have
|fla+tu)| < kelattul < gmax(e=olal eolalyelolult

therefore t > 0 — | f(a+tu)|e=7 "t is integrable whenever o+ > ou|. Hence
the Laplace transform L[t — f(a + tu)] is defined and holomorphic on the
set I(u,0) = {s € C | Re(s) > o|u|} and L,[f] as well, as a composition
and product of holomorphic functions.

. (3pt) For a s € C, the set of u such that s € II(u, o) is open as the preimage
of the open set |0, +o00[ by the continuous function u € U — Re(su) — o|ul.

Let ¢ : Us x Ry — C be defined as
Plu,t) = fla+ tu)e(@HtWsy,
Since
|fla+tu)| < relottul < o etlulo
with k1 = kmax(e=?l%l e?lel) and
—(a+tu)s

‘6 | _ e—Re((a+tu)s) _ e—Re(as)e—tRe(su)7

we end up with
W(U’ t>| < (lﬁe_Re(as) ‘ul)et(‘7|u|—R6(su)) ]
Since for any u € U,
Ly[fl(s) = | dl(u,t)dt
R4

we check the assumptions of the complex-differentiation under the integral
sign theorem:

o For every u € Uy, the function t € Ry + ¢(u,t) is Lebesgue measur-
able (it is actually continuous since f is holomorphic).

o If s € II(ug,0), since € := Re(sug) — o|up| > 0, by continuity there
isa 0 <71 < |up| such that |u — ug| < r ensures Re(su) — oju| > €/2.
Let 5 be an upper bound of x1e~7¢(®%)|y| when |u — ug| < r. The
bound on v that we have derived above yields

[$(u, t)| < roe™"?

and the right-hand side of this inequality is a Lebesgue integrable
function of .

10



o For every t € Ry, it is plain that the function u € Us — ¥(u,t) is
holomorphic.

Consequently £,[f](s) is a complex-differentiable function of .

4. (1.5pt) First method: since we know that the complex-derivative of
L, [f](s) exists with respect to u, we can apply the chain rule to the
differentiable function

X:AERL — Ly[f](s) with p(t) =a+t(Au)
at t = 1: it yields

dx,,, d du), .. d
D)= L, < 00y = L) <

Since by question 1 we know that the function y is constant, we conclude
that £ £,,[f](s) = 0.

Second method: we use the result of the differentiation under the integral
sign. It provides

%ﬁﬂ[f](s) = a—w(u,t) dt.

R, ou
Since ¢(u,t) = g(tu)u with g(z) = f(a + 2)e5(+2) we have

O d , dg(tu)

%(U,t) = @(Q(fu)u) = ¢'(tu)tu + g(tu) = 7 t+ g(tu)
d
= S (g(tw)t)
and thus

| Setwnde= [ Lottt = oy

f (l + TU) s(a+ru)7,
Since € := Re(su) — ol|u| >0
[fa+ru)e™ ) < [pu,r)r/ul < (ke "@)e

The right-hand side of this inequality converges to 0 when r — +oo.
Therefore, by the dominated convergence theorem

iL/L[f](s):/R O tydt = Tim a:f( ) dt = 0.

du i ou r—+o0 Jq

5. (2pt) Since the Laplace transform of t € Ry — 1/(¢t 4+ 1) is given by

“+o0 efst
F(s) = / dt,
0 t+1

11



the change of variable ¢t + 1 — ¢ yields

+oo —s(t—1) +oo —st
F(s) = T w—e [
t
1 1

t

If s is equal to the real number z > 0, the change of variable zt — t then

provides
+o0 -t 400 et
F(z) = el'/ d(xt) = e‘”/ —dt
1 T t

xt

and thus Ey(z) = e *F(z). Since t € Ry — 1/(t+ 1)e~? t is integrable
whenever ot > 0 the Laplace transform F of t — 1/(¢ 4+ 1) is defined and
holomorphic on {s € C | Re(s) > 0}. Thus, the function G : s — e *F(s)
extends holomorphically E7 on this open right-hand plane. Any other
function G with the same property would be equal to G on R* and thus
every positive real number z would be a non-isolated zero of G — G. By
the isolated zeros theorem, since the open right-hand plane is connected,
G and G are necessarily equal.

. (2pt) For any u € U, since Rew > 0, for any t > 0, Re(y(t)) = tReu > 0.
Since for any z such that Rez > 0, |z+1| > 1, we have |f(2)| = 1/]z+1]| < 1
and thus

vz e Ry, 1£(2)] = ke

with k=1 and ¢ = 0.

By definition, for any s € C\R_, U is the set of all directions u such that
Re(u) > 0 and Re(su) > 0. To be more explicit, if o denotes the argument
of u in [—7, 7| and S the argument of s in |—m, 7|, this is equivalent to

—m/2<a<w/2 and —7/2<a+pf<7/2

The points u = re’® that satisfy these constraints form an open sector:
r > 0 is arbitrary and if 8 > 0, « is subject to

e T
Tca<Iiop

2 2
and if 5 <0
,f,5<a<f
2 2’

In any case, since || < 7, the set of admissible arguments « is not empty.

. (3pt) It is plain that
Re(up) = Re((1 — O)up + Ouy) = (1 — 0)Re(ug) + ORe(uq).
and that for any s € C

Re(sug) = Re(s((1 — O)ug + Ouy)) = (1 — 0)Re(sug) + Re(suy).

12



Since u € Uy if and only if Re(u) > 0 and Re(su) > 0, if ug € U, and
uy € Us then up € Uy for any 6 € [0, 1].

The function v € Ug — L4[f](s) is holomorphic, hence the composition of
0 €0,1] = ug € Us and u € Us — Ly[f](s)

is continuously differentiable,

£ulfl(s) = £l = [ L lf1(5) a0

and d AL, [f)(s) d
S Ug
SLulfs) = )

which is zero by question 4. Hence L., [f](s) = L+, [f](s); the definition of
G is unambiguous.

. (4pt) For k € {0,1} and any r > 0,

1

f(z)e %% dz = F((ryug)e ) pyy dp = / f(tug)e™*Bundyy, dt
Tk 0

0

thus by the dominated convergence theorem

r—4o00

£, [£1(5) = £1o[71(s) = lim ( [ s | Tf(z)e_szdz>.

Since (7§)¢ and ~] are consecutive, with the path u, = (v§) |47, this is
equivalent to

Lul0)) = £l =t [ f@eaz,

r—+00

Now, the path v, defined by v,-(8) = (1 — 0)rug + Oruy is such that p, | v
is a closed rectifiable path in Ug which is simply connected. Therefore by
Cauchy’s integral theorem

—Szd — —Szd .
. f(z)e z /VT f(z)e z

For any 6 € [0, 1], we have Re(sug) = (1 — 0)Re(sug) + 6Re(suq), thus

e:= min Re(sug) >0
0€[0,1]

and
‘f(yr(9)>efsur(6)| < KefRe(srug) < ke™E.

13



Given that £(v,.) = r|u; — ug|, the M-L inequality provides

/y,, f(z)e **dz

lim / f(z)e™**dz = 0.

< ke “rluy — ugl

and thus
o0
Finally, £+, [f](s) = £,[f](s): the definition of G is unambiguous.
. (1pt) By construction the function
s€ C\R_ — e °G(s)

is holomorphic (since every L, is holomorphic, G is holomorphic); It
extends s — e *F(s), thus it also extends F;. Since C \ R_ is connected,
by the isolated zeros theorem, this extension is unique (the argument is
identical to the one used in question 6).

14



	Problem R
	Problem L
	Problem R – Answers
	Problem L – Answers

