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Star-Shaped Sets

Question

Prove that every open star-shaped subset of C is simply connected.

Answer

Let © be an open star-shaped subset of C with a center c.

For any z € C\ © and any s > 0, the point w = z + s(z — ¢) belongs to C\ .
The ray of all such points w is unbounded and connected, thus it is included
in an unbounded component of C \ 2. All components of C \ € are therefore
unbounded: € is simply connected.

Alternatively, let v be a closed path of Q and let z = ¢ + re?® € C\ Q. Since
the ray {z + se® | s > 0} does not intersect (2, for any ¢ € [0,1] and any s > 0,
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Y(t) — z # se’. Thus e (") (y(t) — z) € C\ R_ and the function
¢:te0,1] = e arg(e ™) (y(1) — 2))

is defined; since it is a continuous choice of the argument w — Arg(w — z) along
s

ind(y,2) = 5_[6(1) — 9(0)] = 0.

Therefore, 2 is simply connected.

The Argument Principle for Polynomials
Questions

Let p be the polynomial
p(z) =A% (z—a1)™ X X (2 —apy)"™

where A is a nonzero complex number, a1, ..., a,, are distinct complex numbers
(the zeros or roots of the polynomial) and nq, . .., n,, are positive natural numbers
(the roots orders or multiplicities). Let v be a closed path whose image contains
no root of p:

vt € [0,1], p(y(t) #0.
The argument principle then states that

ind(po~,0) = Zind(’y, ag) X ng.
k=1

1. Application: Finding the Roots of a Polynomial.

Use the figures below to determine — according to the argument principle —
the number of roots z of the polynomial p(z) = 23 + 2z + 1 in the open unit
disk centered on the origin.

2. Argument Principle Proof (Elementary). For any k € {1,...,m},
we denote 6 a continous choice of z — Arg(z—ax) on v. Use the functions
0r to build a continuous choice of z — Argz on p o ~; then, prove the
argument principle.

3. Argument Principle Proof (Complex Analysis). Assume that v is
rectifiable; write the winding number ind(p o v,0) as a line integral, then
find another way to prove the argument principle in this context.
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Figure 1: Graph of ¢ € [0,1] — arg [(e2™)3 + (e2™") + 1]; this function has a
jump of —27 at t = 0.5 (where it is undefined). The dashed line represents a
continuous choice of the argument of t € [0,1] > (e?27%)3 + (e?27) + 1.
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Figure 2: Graph of t € [0,1] = |(e?2™)3 + (e2™!) + 1].



Answers

1. Let v :t € [0,1] = €™ we have (po7)(t) = (27%)3 + (e*?"t) + 1. The
second figure shows that the graph of t — |(p o ¥)(¢)| does not vanish on
[0, 1], hence the image of v contains no root of p. The second figure shows
that the variation of the argument of z on the path p o~ is 27 (a variation
of m between ¢t = 0 and ¢t = 0.5 and also a variation of m between ¢t = 0.5
and t = 1.0). Accordingly, we have

ind(po~,0) =1.

On the other hand, every zero z of p such that |z| < 1 satisfies ind(y,2) =1
and every zero z of p such that |z| > 1 satisfies ind(v, z) = 0. Consequently,

the expression
m

Z 1nd(77 ak) X N

k=1
provides the number of roots of p — counted with their multiplicity — within

the unit circle. By the argument principle, there is a unique root of p
within the unit circle.

2. If y is an argument of A, the sum
0:te [0, 1] — 90 + nlﬁl(t) Xoeee +nm9m(t)

is continuous and

eia(t) :ei90 % ei’nlel(t) % . X ei’ﬂmem(t)
_ ni _ MNm
A G0-a)” () —aw)
AL () = an|™ [y(£) = am|™m

~ (po)(®)
RICERIGI

therefore 6 is a choice of the argument of z — z on p o~y. Consequently,

[z = Arg z]poy = 6(1) — 0(0)

C tomto+ 3ot~

k=1

Z [z — Arg(z — ag)]-

k=1
A division of both sides of this equation by 27 concludes the proof.

3. The integral expression of the winding number is
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The polynomial p is holomorphic on C, hence we can perform the change
of variable z = p(w), which yields

ind(po~,0) = ! /p’(w)dw

—izm J, p(w)

If we factor p(w) as (w — ag)™ q(w), we see that

Pw) e g (w)
plw)  w—ar  gq(w)’

applying this process repeatedly for every k € {1,...,m}, until ¢ is a
constant, provides

Set Operations & Simply Connected Sets
Questions
Suppose that A, B and C\ C are open subsets of C. For each of the three

statements below,

o determine whether or not the statement is true (either prove it or provide
a counter-example);

o if the statement is false, find a sensible assumption that makes the new
statement true (and provide a proof).

The statements are:

1. Intersection. The intersection AN B of two simply connected sets A and
B is simply connected.

2. Complement. The relative complement A \ C of a connected set C' in a
simply connected set A is simply connected.

3. Union. The union A U B of two connected and simply connected sets A
and B is simply connected.



Answers

1. Intersection. The statement holds true. Indeed, let v be a closed path
of AN B; it is a path of A and a path of B. As both sets are simply
connected, the interior of v is included in A and in B, that is in AN B:
this intersection is simply connected.

Alternatively, let C' be a component of
C\(ANB)=(C\A)U(C\B),

and let z € C; we have z € C\ Aor z € C\ B. If z € C\ A, the component
of C\ A that contains z is unbounded; it is a connected set that contains z
and is included in C\ (AN B), hence, it is also included in C. Consequently,
C' is unbounded. If instead z € C\ B, a similar argument provides the
same result. Consequently, all components of C\ (A N B) are unbounded:
AN B is simply connected.

2. Complement. The statement does not hold: consider A = D(0,3) and
C = D(0,1). The set A is open and simply connected and the set C is
closed and connected. The set C' is actually a component of A\ C: it is
included in A\ C, connected and maximal.

However, the statement holds if additionally the set C'\ A is not empty.
Let v be a closed path of A\ C' and let z € C\ (A\C). If ze C\ A4, as A
is simply connected, z belongs to the exterior of «. Otherwise, z € ANC;
as C is a connected subset that does not intersect the image of v, the
function w € C + ind(y,w) is constant. There is a w € C'\ A and
ind(y, z) = ind(y,w) = 0. Therefore z also belongs to the exterior of :
A\ C is simply connected.

Alternatively, let D be a component of
C\(A\C)=(C\A)uC.

Some of its elements are in C \ A: otherwise, C' would be a connected
superset of D that is included in C\ (A \ C); we would have C' = D and
therefore C'\ A would be empty. Now, as D contains at least a point z of
C\ A4, it contains the component of C\ A that contains z; therefore D is
unbounded. Consequently, A\ C' is simply connected.

3. Union. The statement doesn’t hold: consider
Ay ={e?™ |t €[0,1/2]}, B, = {*" |t € [1/2,1]}.
and the associated dilations
A={zeC|d(zA4s) <1}, B={2e€C|d(z B;) < 1}.

They are both open, connected and simply connected (their complement in
the plane has a single path-connected component and it is unbounded) but



their union A U B is the annulus D(0,3) \ D(0,1). We already considered
this set in question 2: it is not simply connected.

However, the statement holds if additionally, the intersection A N B is
connected. Let v be a closed path of AU B and let z € C\ (AN B). We
have to prove that ind(v, z) = 0.

There exist! a sequence (v1,...,v,) of consecutive paths of AU B whose
concatenation is v and such that for any k € {1,...,n}, 7([0,1]) C A or
7([0,1]) € B.

Let ag be the initial point of v, and let w € AN B. As A, Band AN B
are connected, for any k € {1,...,n}, there is a path 85 from w to ag
such that S8;([0,1]) C A if ay € A and Bx([0,1]) C B if ay € B. We denote
Bn+1 = P1 for convenience; define the paths ay as the concatenations

k= Br |7k | Brta-

By construction
n
[z — Arg(z — 2)], ZxHArgx—z)]
k=1
Every path «j is closed, hence this is equivalent to

ind(v, z Z ind(ay, z

but every ay, belongs either to A or B, which are simply connected, hence
the right-hand-side is equal to zero. (This proof was adapted from Ronnie
Brown’s argument on Math Stack Exchange)

IThe collection {4, B} is an open cover of ([0, 1]) which is compact. Now, for any positive
integer n, consider the sequence (v{, ...,y ) where

e () =v((k = 1+1t)/n).

By uniform continuity of «, the diameters of the ;' tends uniformly to zero when n tends to
400. The conclusion follows from Lebesgue’s Number Lemma.
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