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Abstract

This paper deals with delay-differential algebraic equations, a large class of linear
and finite-memory functional differential equations. We introduce several representa-
tions of delay operators that provide a simple definition for the concept of solutions
of such systems. Then we study exponential solutions and prove that the rightmost
zeros of a system characteristic function determine its growth bound.

Résumé

Taux de croissance des équations algébro-différentielles à retards. Cet ar-
ticle traite des équations algébro-différentielles à retards, un large sous-ensemble des
équations différentielles fonctionnelles linéaires à mémoire finie. Nous introduisons
différentes représentations des opérateurs de retard qui fournissent une définition
simple du concept de solution de tels systèmes. Ensuite, nous étudions les solutions
exponentielles et prouvons que les zéros les plus à droite de la fonction caractéristique
d’un système déterminent son taux de croissance.

1 Introduction

Delay-differential algebraic equations (DDAE) are a class of functional dif-
ferential equations (FDE) whose variables are connected through integrators
and finite-memory delay operators. Such a system of equations, with variables
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x ∈ Rn, y ∈ Rm and a finite memory length r, has the structure

∣∣∣∣∣∣∣
ẋ(t) = Axt +Byt

y(t) = Cxt +Dyt
(1)

where zt refers to the memory of the variable z at time t:

dom zt = [−r, 0] and ∀ θ ∈ [−r, 0], zt(θ) = z(t+ θ) (2)

and the symbols A, B, C, D denote delay operators:

A B

C D

 : C([−r, 0],Cn+m)→ Cn+m, linear and bounded. (3)

This class of systems has been already considered in [3,11,1,10,9] but most of
the literature has been focused on some of its subclasses: equations of retarded
type, neutral type and difference equations. Nonetheless, the general model is
important: it is required in the modelling of some physical phenomena such as
lossless propagation (see [10] and the references therein) and in the control of
dead-time systems when standard methods such as finite-spectrum assignment
[8] are used.

A classic stability criterion determines the growth bound of a DDAE system
from the location of the rightmost zeros of its characteristic function. The
validity of this criterion has already been established with several methods
under various restrictive assumptions: for systems of retarded type, for systems
of neutral type and difference equations whose difference operator combines
only discrete and distributed delays [6] or satisfies a “jump” assumption [5]
and for DDAE with discrete delays and stable difference operators [4].

We demonstrate in this paper that a single method, that combines the use of
the Gearhart-Prüss theorem with bounds for the characteristic matrix inverse,
established by complex analysis, can be used to prove this criterion in all these
special cases. Actually, we require only the DDAE system to have a strictly
causal difference operator, an assumption already used to ensure the well-
posedness of the system. To the best knowledge of the author, this general
result was not available.

Matrix-valued measures provide a concrete representation of delay operators:
any linear bounded operator L : C([−r, 0],Cj)→ Ci corresponds to a unique
countably additive function on the bounded Borel subsets of R, supported on
[−r, 0], with values in Ci×j. This alternate representation – that we still denote
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L – is related to the initial operator by:

Lφ =
∫
dLφ :=

∑
l

[∫
φk dLlk

]
el (4)

where (e1, . . . , ei) denotes the canonical basis of Ci. Let L∗ be the measure
obtained by symmetry around t = 0 of L, such that for any bounded Borel set
B, L∗(B) = L(−B) and let ∗ be the convolution between time-dependent lo-
cally integrable functions – or more generally measures – of left-sided bounded
support. The convolution of two scalar, vector or matrix-valued measures of
compatible dimensions is defined as the combination of scalar convolution and
linear algebra product ; for example for two matrix-valued measures A and B,
A ∗ B is the matrix-valued measure such that (A ∗ B)ij :=

∑
k Aik ∗ Bkj. We

also implicitly extend functions defined on a subset of R by zero outside of
their domain. With these conventions, for any continuous function z defined
on [−r,+∞), we have ∀ t > 0, Lzt = (L∗ ∗ z)(t). As the right-hand side of
this equation is still properly defined – as a locally integrable function of t –
if z is merely locally integrable, we may rewrite equation (1) as a convolution
equation.

Let e be the Heaviside function. We say that a pair of locally integrable func-
tions (x, y), defined on [−r,+∞), with values in Cn+m, is a (locally integrable)
solution of (1) if there is a f ∈ Cn such thatx

y

 (t) =

 e ∗ A∗ e ∗B∗
C∗ D∗

 ∗
x
y

 (t) +

 f
0

 for a.e. t > 0. (5)

We assume in the sequel that the difference operator D is strictly causal,
that is D({0}) = 0. This condition ensures that this system of equations
defines a well-posed initial value problem in the Hilbert product space X =
Cn × L2([−r, 0],Cn+m), see [1,11]: given any (φ, χ, ψ) ∈ X, there is a unique
solution (x, y) such that (x(0+), x0, y0) = (φ, χ, ψ) and the mapping (t ∈
R+ 7→ exp(At)) given by (x(t+), xt, yt) = exp(At)(φ, χ, ψ) for t ≥ 0 is a
strongly continuous semigroup on X.

2 Exponential Solutions – Characteristic Matrix and Resolvent
Operator

We denote by ∆ the characteristic matrix of system (1), defined at any point
s ∈ C by

∆(s) =

 sIn 0

0 Im

−L

A∗ B∗
C∗ D∗

 (s) (6)
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where L is the Laplace transform.

The determinant of the characteristic matrix – the characteristic function –
and its adjugate both have a quasi-polynomial structure:

det ∆(s) =
n∑
i=0

ci(s)s
i, adj ∆(s) =

n∑
i=0

Ci(s)s
i (7)

where the ci (resp. Ci) are entire functions (resp. matrices of entire functions)
bounded on any right-hand plane. Moreover the leading coefficient of the char-
acteristic function is given by cn(s) = det ∆0(s) where ∆0 is the characteristic
matrix of the system y(t) = Dyt. Lemma 2.1 establishes elementary proper-
ties of det ∆0 and lemma 2.2 describes how the zeros of det ∆0 and det ∆ are
connected.

For any real number σ, we denote Pσ the open half-plane {s ∈ C | <(s) > σ}
and for any positive η, we denote Zη the set of complex numbers whose distance
to the zeros of det ∆0 it at most η:

Zη = {s ∈ C | ∃ z ∈ C, det ∆0(z) = 0 ∧ |s− z| ≤ η}. (8)

Lemma 2.1 – zero clusters and lower bound. Let σ ∈ R and ε > 0. There
is a η > 0 such that any connected component Λ of the set Zη is bounded and
Λ ⊂ Pσ−ε if Λ ∩ Pσ 6= ∅. Moreover, for any η > 0, there is a κ > 0 such that
| det ∆0| ≥ κ on Pσ−ε − Zη.

Proof. Let Σm be the set of permutations of {1, ...,m} and

det∗M =
∑
σ∈Σm

sgn(σ)M1,σ(1) ∗ . . . ∗Mm,σ(m).

As ∆0(s) = Im − LD∗(s), det ∆0 = L µ where µ = det∗(δ0Im − D∗). The
complex measure µ is a sum of convolution products of m complex measures
supported on [0, r], hence it is supported on [0,mr]. Consequently, det ∆0 is
an entire function that satisfies the inequality

| det ∆0(s)| ≤ |µ|([0,mr]) max(1, exp(−<(s)mr)). (9)

Since D({0}) = 0, we also have µ({0}) = 1, which yields

lim
<s→+∞

det ∆0(s) = 1. (10)

The function z 7→ det ∆0(iz) meets the assumptions of [7, th. VIII]. Thus,
the number of distinct zeros N(ρ) of det ∆0 whose modulus is less than ρ is
such that lim supρ→+∞N(ρ)/ρ ≤ 2mr/π. If there is an unbounded connected
component of Zη, there is a corresponding sequence (zn)n∈N of distinct zeros
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of det ∆0 such that for any n ∈ N, |zn+1 − zn| ≤ 2η, which provides the
density estimate lim supρ→+∞N(ρ)/ρ ≥ 1/2η. Consequently, if η < π/4mr,
every connected component of Zη is bounded.

The proof of the two remaining statements use the same complex analysis
argument. Consider a sequence sn of numbers in Pσ−ε such that <sn → x ∈ R
when n → +∞. From (9), it follows that the sequence of functions defined
by fn(s) = det ∆0(s + i=sn) is locally uniformly bounded on C. By Montel’s
theorem, a subsequence converges locally uniformly to an entire function f∞,
which by (10) is not identically zero. From Hurwitz’s theorem, it follows that
for any sufficiently small α > 0 there is an arbitrarily large integer n such that
det ∆0 has m zeros in the open disk B(sn, α) where m is the multiplicity of x
if f∞(x) = 0, or 0 otherwise.

Consider a sequence Λn of bounded connected components of Z1/2n, defined
for n sufficiently large, such that Λn ∩ Pσ 6= ∅ and Λn − Pσ−ε 6= ∅. For any
such n and any α < ε, there is a yn ∈ R such that the number of zeros of
det ∆0 in the open disk B(σ+ iyn, α) is greater than nα− 1. This contradicts
the result of the previous paragraph for the sequence sn = σ + iyn.

Finally, if | det ∆0| has no positive lower bound on Pσ−ε − Zη, we can find
in this set a sequence sn such that det ∆0(sn) → 0 when n → +∞. By
(10), the sequence sn can be selected such that <sn has a limit x ∈ R. As
f∞(x) = limn→+∞ fn(sn − i=sn) = 0, there is an integer n such that det ∆0

has at least one zero in B(sn, η), a contradiction with the assumption that
sn 6∈ Zη. 2

Lemma 2.2 – characteristic function zeros. Let σ ∈ R. If the function
det ∆0 has an infinite number of zeros on Pσ, the function det ∆ has an infinite
number of zeros on Pσ−ε for any ε > 0.

Proof. Suppose that det ∆0 has an infinite number of zeros on Pσ. Let η > 0
be such any connected component Λ of Zη that contains such a zero is bounded
and is included in Pσ−ε (lemma 2.1). The zeros of det ∆0 are isolated, hence
every Λ contains a finite number of zeros, and the collection of sets Λ is
therefore infinite. It is also locally finite: for any compact set K ⊂ C and any
set Λ such that K ∩Λ 6= ∅, Λ contains a closed disk Bη of radius η such that
K ∩ Bη 6= ∅, hence Bη ⊂ K ′ = K + B(0, η) and only a finite number of such
disjoint disks Bη may be contained in K ′. Thus, for any ρ > 0, there is a set
Λ that does not intersect B(0, ρ).

The lower bound from lemma 2.1 and the quasi-polynomial structure of det ∆0

provide the existence of a ρ0 > 0 such that, if s ∈ Pσ−ε is not in Zη/2 and
satisfies |s| > ρ0, then | det ∆(s) − sn det ∆0(s)| < |sn det ∆0(s)|. Let Λ0 be
one of the sets Λ that does not intersect B(0, ρ0). As Λ0 is included in Pσ−ε,
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the application of Rouché’s theorem to its boundary yields the existence of
at least one zero of det ∆ in Pσ−ε. We may more generally define ρn+1 =
sup{|s|, s ∈ Λn} and apply the same argument to a set Λn+1 that does not
intersect B(0, ρn+1) to prove the existence of an infinite sequence of zeros of
det ∆ in Pσ−ε. 2

The infinitesimal generatorA of the DDAE semigroup is defined byA(φ, χ, ψ) =
(Aχ+Bψ, χ̇, ψ̇) on the domain {(φ, χ, ψ) ∈ Cn×W 1,2([−r, 0],Cn+m) | χ(0) =
φ, ψ(0) = Cχ + Dψ}, see [11]. The resolvent operator (sI − A)−1 exists iff
∆(s)−1 exists: the resolvent set of A is

ρ(A) = {s ∈ C, ker ∆(s) = {0}}. (11)

Moreover, for any real number σ, there are constants κσ and λσ such that

‖(sI −A)−1‖ ≤ κσ‖∆(s)−1‖+ λσ if <s ≥ σ and s ∈ ρ(A). (12)

Let the growth bound ω0 of the DDAE system be the infimum of the real
numbers ω for which there exists α > 0 such that, for any initial condition
(x(0+), x0, y0) ∈ X, the solution of the system satisfies:

∀ t ≥ 0, ‖(x(t+), xt, yt)‖X ≤ α exp(ωt)‖(x(0+), x0, y0)‖X . (13)

Theorem 2.3 - growth bound. The growth bound of a DDAE system such
that D({0}) = 0 is determined by the rightmost zeros of the characteristic
function and given by:

ω0 = sup{<(s), s ∈ C | det ∆(s) = 0}. (14)

As a corollary, such a DDAE system is uniformly exponentially stable iff the
set of zeros of its characteristic function is on the left of – and at a positive
distance from – the imaginary axis.

Proof. We use the Gearhart-Prüss theorem [2] to establish the result: we
prove that for any σ > s(A), where s(A) is the spectral bound of A, ‖(sI −
A)−1‖ is bounded on P σ ; this is achieved by combining inequality (12) with
the derivation of a bound for ‖∆(s)−1‖ on P σ.

The quasi-polynomial structure of the adjugate matrix yields on P σ the esti-
mate ‖adj∆(s)‖ ≤ κ(1 + |s|n). From (11) we deduce that det ∆ has no zero
on Pσ−ε for any ε > 0 such that s(A) < σ − ε and hence, by lemma 2.2,
det ∆0 has at most a finite number of zeros on Pσ−ε/2 and therefore on P σ.
On P σ and away from these zeros, | det ∆0| has a positive lower bound κ′

by lemma 2.1. It follows from the quasipolynomial structure of det ∆ that
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| det ∆(s)| ≥ κ′′(1 + |s|n) for a κ′′ > 0, on P σ except on a compact set K and
by continuity, this estimate still holds on all of P σ with a possibly smaller κ′′.
Finally, for any s ∈ P σ, ‖∆(s)−1‖ = ‖ adj ∆(s)‖/| det ∆(s)| ≤ κ/κ′′. 2
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