Pandoc — JSON Representation

Sébastien Boisgérault, Mines ParisTech, under CC-BY-4.0

February 14, 2016

Pandoc provides a very handy document model; it can be used systematically to
generate, analyze and transform pandoc documents. However, it is available as
a collection of Haskell types and maybe, you don’t want to learn Haskell!

You know what? This is fine. Even if pandoc is a virus that spreads Haskell
according to its author, you have other options. The standard advice (see
“Scripting with pandoc”) is to rely on JSON import/export features and then to
use your preferred dynamic language — Python, Javascript, etc. — to perform
your task.

This article documents the pandoc JSON conversion rules. Read it if you intend
to work directly with the JSON data produced by pandoc or to better understand
the inner workings and limitations of the pandoc tools that are not based on
Haskell, such as pandocfilters.

Getting Started

If you have not done so already, it’s probably a good idea to have a look at
“Pandoc — Document Structure” for an introduction to the pandoc document
model. At the very least, install GHC & the pandoc library, start GHCi and
import the following modules:

> import Data.Map (Map, fromList, empty)
> import Text.Pandoc.Definition

Now, we consider specifically the representation of data as JSON strings; pandoc
doesn’t reinvent the wheel but instead leverages the aeson package. The function
js below displays the JSON representation of pandoc data:

> import Data.Aeson (encode, ToJSON)
> import qualified Data.ByteString.Lazy.Char8 as BS
> let js x = (BS.putStrLn . encode) x

mailto:Sebastien.Boisgerault@mines-paristech.fr
http://creativecommons.org/licenses/by/4.0/
http://pandoc.org/
https://www.haskell.org/
http://johnmacfarlane.net/BayHac2014/#/i-created-a-virus
http://pandoc.org/scripting.html
https://pypi.python.org/pypi/pandocfilters
../document-structure/index.html
https://hackage.haskell.org/package/aeson

The Rules

The set of rules used to convert pandoc document data to JSON are described
in this section. A few exceptions to these rules are the topic of the next one.

Primitive Types

Let’s start with the basic types used in the pandoc document model: booleans,
integers, doubles and strings:

> js True
true

> js 42

42

> js 3.14
3.14

> js "text"
"text"

Nothing too surprising so far.

Standard Containers

Consider the standard containers used in Haskell: lists, tuples and maps.

> js [Ilall’ ||bl|’ "C"]

[llall,llbll’llcll]

> js (True, 1, "text")

[true,42,"text"]

> let map = fromList [("a", 1), ("b", 2)]
> js map

{"a":l,"b":2}

To summarize:

o Haskell lists and tuples are converted to javascript lists — there is no tuple
type in javascript — and maps to javascript objects.

e These conversion rules are applied recursively to container items.
So we have for example:

> jS (nan, ["b"], [("C", "d")])
["a",["b"],[["c","d"]]]

Pandoc Types
The value of a pandoc type is converted to a javascript object with:

e a type (constructor) property — key t — for the constructor name,

o a contents property — key c¢ — for the list of (converted) arguments.
Consider for example MathType; both its constructors take no argument:

> :info MathType
data MathType = DisplayMath | InlineMath

Hence, the value InlineMath gets converted as:

> js InlineMath
{"t":"InlineMath","c": [1}

Now, the Math (Inline) constructor has math type and string arguments:

> :info Math
data Inline = ... | Math MathType String |

Therefore, it is converted as:

> js (Math InlineMath "a=1")

{"t" :"Math" , nen. [{"t" :"InlineMath" R nen. [] } R na=1n] }
Pandoc Records

Records are converted to javascript objects with:

e a type property — key t — for the constructor name,

« a property for each record field (the value is converted).
For example:
> :info Citation

data Citation
= Citation {citationId :: String,

citationPrefix :: [Inline],
citationSuffix :: [Inline],
citationMode :: CitationMode,
citationNoteNum :: Int,

citationHash :: Int}

Hence, we should have:

> js (Citation "" [] [] NormalCitation O 0)
{"t":"Citation",
"citationSuffix":[],
"citationNoteNum":O0,
"citationMode":{"t":"NormalCitation","c":[]1},
"citationPrefix":[],
"citationId":"",
"citationHash":0}

Actually this is not ezactly what happens because citations fall into the scope
of the “single constructor” exception explained in the next section. I would
happily show you an example of a pandoc record that is converted according to
the general rule ... but the only other one is Meta and it’s also an exception!

The Exceptions

There are some exceptions to the general rules above. You may also use a less
negative wording and call them optimizations; indeed, they always reduce the
length of JSON representations.

Single Constructor Argument

Consider for example

> :info Str
data Inline = Str String |

Obviously, Str "text" should be converted as {"t":"Str","c":["text"]},
right 7 Think again:

> js (Str "text")
{Iltll : "Str" s IICII : "teXt"}

When constructors have a single argument, the list associated to the c key is
unwrapped. Be careful: only one list level is removed; for example, for the
emphasis

> :info Emph
data Inline = ... | Emph [Inline] |

we have

> js (Emph [Str "text"])
{"tll : ||Emph|| s ||C|| : [{"tll . ||Str|| , "C" : lltextll}] }

instead of {"t" . "Emph“ s nen. [[{"t" NGty R nen. "text"}]] }

Single Type Constructor

If a value has a type with a single constructor and you know this type, then the
type constructor property of the JSON data is redundant and pandoc gets rid of
it.

For example, consider

> :info Meta
newtype Meta
= Meta {unMeta :: Map String MetaValue}

The JSON representation of the empty metadata nullMeta should be
{"t":Meta, "unMeta":{}}. But if you know that you deal with a value of type
Meta, given that there is a single constructor (also called Meta) for this type,
pandoc does not need the type constructor information to interpret the JSON
data, and hence, it does not include it. You have instead:

> js nullMeta
{"unMeta":{}}

Similarly, consider the Format type:

> :info Format
newtype Format = Format String

For Format "html", instead of {"t":"Format","c":"html"}, we can get rid of
the "t" key and now, the whole javascript object becomes unnecessary, and only
the value of the contents property remains:

> js (Format "html")
Ilhtmlll

Does it Work?

Well sure, it works. I mean, pandoc can generate JSON data for a document and
read it back unambiguously, so it works. Despite the optimizations performed
by the exceptional rules and other sources of ambiguities. It works because at
any depth of the interpretation of the JSON data, Haskell has access to the type
hierarchy, and therefore knows the type of the data to be evaluated.

But the situation is typically different in a dynamic language, where your code
probably knows very little about the pandoc types and expects to read this
information at runtime, directly in the JSON data, alongside the values.

If you don’t know the type of the data, you face the following ambiguities:

« tuples vs lists (both are JSON lists),
« maps vs pandoc types & records (all of them are JSON objects),
« single constructor argument (list of argument vs single list argument),

« single type constructor (the type information stripped).

The conclusion ? The optimizations — or exceptional rules — used by pandoc in
the generation of JSON data are not such a great idea. They may save a few
bytes here and there, but they also make JSON much more difficult to use as an
exchange format.

What is the solution ? Short of changing the pandoc JSON representation, if
we want the same versatility in the processing of documents in Haskell and say
in Python, it is to import and use the information about the pandoc document
model in Python.

	Getting Started
	The Rules
	Primitive Types
	Standard Containers
	Pandoc Types
	Pandoc Records

	The Exceptions
	Single Constructor Argument
	Single Type Constructor

	Does it Work?

