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Modelling of Mechanical Systems — A Short History

» Precursors: Galileo, Descartes, etc.

» Classical (Newtonian) Mechanics:
Newton, 1687: Philosophiae Naturalis Principia Mathematica

» Analytical (Lagrangian) Mechanics:
Joseph-Louis Lagrange, 1788: Méchanique Analitique

» Analytical (Hamiltonian) Mechanics:
William Rowan Hamilton 1834: On the Application to
Dynamics of a General Mathematical Method previously
applied to Optics



What's new in Analytical Mechanics ?

Same modelling of mechanical systems in the end, but a different
way to discover the system equations.

Analytical Mechanics:

» relies on the principle of stationary action (calculus of
variation, good for maths),

> the steps are easy to automate (good for complex systems and
computers),

> describes constrained mechanical systems without extra hassle
(good for robotics),

» unveils additional structure of the mechanical system (good
for physics and control).



Lagrangian Mechanics Concepts

» g € R™ generalized coordinates,

» g € R": generalized velocities,

» K(q, g) € R: kinetic energy,

» V(q) € R: potential energy,

> L(q,q) = K(q.q) — V(q): lagrangian,
» fe R": extra forces.



Euler-Lagrange Equations

The trajectories q(t) followed by the system satisfy:

d
Vil = Vol =1



It's a result of the principle of stationary action: we solve

min A(q)

with



Examples - Punctual Mass

A point with mass m at the location (x, y, z), subject to the force f.

Q
I
N < X

L(q,q9) = %m (x2 +}'/2+'zz)

The Euler-Lagrange equation delivers:



Examples - Simple Pendulum, 1 d.o.f.

Consider the planar system made of a punctual mass m connected
by a massless rod of length ¢ to the origin, subject to the gravity
force.

We select as a generalized coordinate g the angle 8 between the
rod and the lowest position. Then, the lagrangian is equal to:

. 1 .
L(8,0) = §m(€9)2 + mgt cos 6

The Euler-Lagrange equation provides:

ml?6 + mglsin = 0



Examples - Simple Pendulum, 2 d.o.f. (3D)

Same setting, but without the planar restriction.

A new angle o determines the rotation w.r.t. the vertical axis of
the rod.
18
-]

L(g,q) = %mﬁz(éz + (sin 0)?6?) + mgt cos 0

The Euler-Lagrange equation provides:

o 1 0 0 o0 . a2 mglsin 0
me [0 (sin9)2] [&]—mﬁ cos@smGl_zdé - 0



Euler-Lagrange Equations - Explicit Form

Write

Ka,8) = 34'M(a)i

where M(q) € R™" is the symmetric, non-negative (generalized)
mass (inertia) matrix. The Euler-Lagrange equations become

M(q)g = f=VqWq) — (g,9)q
where ((q, q)g are the centrifugal and Coriolis forces.

la.9)q = P09

G- 54 dM(0)3)



Centrifugal and Coriolis forces

The matrix C(g, g) € R™" may be defined in terms of the
Christoffel symbols of the tensor metric M:

1 oM;;  OMy.  OM,; \ .
Ci' P Yy 4 K J
Y2 zk: <3qk dq; 0qi > Tk

N.B.: the matrix
dt ( ) ( ) )

is anti-symmetric.



Total Mechanical Energy

The total mechanical energy of the system is

H(q,q) = K(q,q) + Vq)

Its evolution is driven by:



Hamiltonian Mechanics

It provides an alternate representation of the Euler-Lagrange
equations.

Consider L as a function of g for a fixed value of q.

Compute its Legendre transform H(p, q):

H(p, q) = max (p-q—L(q.q))

We call:

» p: (generalized) momentum,
» H: hamiltonian.



Assume that

L4t M(q)a, M(q) = M(q)', M(q) > 0.

Klg.q) = 5

There is a unique g solution of the Legendre maximisation problem,
and one-to-one mapping

(g:9) <— (p; q).

We also have
p=Vq4l(q,q) = M(q)q

H(p,q) = %pt/\/l(q)‘lﬁ V(q) = K(p, q) + Uq)

H is the total mechanical energy of the system.



VoH(p.q) = g+ (Vp@)p — (Vpa)V4l(q, 4) = ¢

. d .
VqH(p,q) = —V4l(q,q) = f— FthL =f—p

These computations lead to:
g = +VpH(p,q)
p = —VqH(p.q)+f

It's now trivial to prove results such as:

H="fg



Change of Coordinates

The Euler-Lagrange equations are invariant by change of
coordinate system: if

d

Vil — Vol =f

and
q = ¢(q)

then
d

Vol Val="1



with _
q = [Veo(a)'a
f =[Ved(a)]'f
so that the power expression is preserved through the change of

variables:
P=fq=1f-q



Constrained Systems

Consider mechanical systems subject to constrained on the
admissible motions having the structure

Y(q)g =0, £(q) e R™"

Note that geometric — or holonomic - constraints, which have the
structure G(q) = 0, may be described in this framework with

>(q) = V4G(q)".

If the extra force fs needed to enforce the constraint does not work
(no exchange of energy), we end up with

INER™, i =T(q)t A



M(q)g = f—V Ua)— Uq,q)q+X(q)" A
Y(q)g = 0

Assume that X(q) € R™*" is full rank (m < n), that is
dimkerX(q)=n—m
Pick a n x (n— m) matrix S(q) of full rank (n — m) such that:

2(q)S(q) =0

Y(q)g=0 < IneR"™™, g=5(q)n

The vector 7 explicits the degrees of freedom of the system.



Equivalent to

{I\/I,(q)fy = S(q)"(f— VqVq) — Uq, 4)g— M(q)
g = S(q)n

with the reduced mass matrix:

M(q) = S(q)*M(q)S(q)

dS(q)
dt

1)



Kinematic Modelling of Mobile Robots

Consider a mobile robots with:

» n — fixed or orientable — wheels,
> a rigid chassis.

We attach to the chassis a mobile frame, described w.r.t. a fixed
frame by:

» the coordinates x, y of its origin,
> an orientation angle 6.

We set

M
I
< X



A wheel i is described by:

v

a (common) wheel radius r,

v

its coordinates (Xj, Y;) in the mobile frame,

v

the steering angle ~;,
(0 when the wheel points in direction of the 2nd frame axis).

v

the wheel rotation angle ¢;.



Rotation Matrices

Let
cosf —sinf
R(0) = l sind cosd 1
and
cosf) —sinf 0
R(@)=| sinf cosf 0
0 0 1

» R(0) is a rotation matrix,
» R(0) is a homogeneous rotation matrix.



No-Slip Pure Roll (NSPR) Condition

The velocity of the center of the wheel j, in the fixed frame
coordinates, is given by:

. 0
i = RORG) [ - ]
Under the NSPR assumption, it also is:

v — l ;] + 6R(x/2)R(6) [

XX



Collecting these equations for all wheels leads to:

CNRO)E = 0o
JRO)E = 1

with

C(y) = | +cosvyi +siny; +Xisinvy;— Yjcos~;

J(v)=| —sinyi +cosyi +Xjcos~;+ Yisiny;



The kinematic constraint C(7)R(6) ¢ = 0 may be explicited if we
introduce full-rank matrix X(q) of size n x m whose columns form
a basis of ker C(7).

C7)E(y) =0

The kinematic equations may be rewritten as:

§ = RO
rg = Jy)E(v)n

where n € R is a free vector.



Geometric Interpretation

There is a unique location where the velocity of the chassis is 0,
unless the velocity field is a uniform translation.

This is the instantaneous center of rotation of the system.

Let (x*, y*) be its coordinates in the mobile frame. They are

solutions of:
0| | x : X*
that is _ :
X B X/9
¢ ] _ Rr/2 0)[y/9 ]




Homogeneous coordinates (X*, Y*, Z*) of the ICR is a triple such
that there is a t € R with

X* tx*
Y- | =]ty
Z* t

A triple of homogeneous coordinates for the ICR are obtained by:

X*
Y | = R(n/2)R(0)" ¢
z*

It is such that Z* = 6.
The uniform translation may be described in the same setting:

it corresponds to Z* = 6 = 0.



The kinematic constraints on f given by
CMR(O) =0
are equivalent to the constraints
X*

CY)R(—n/2) | Y* | =0
z



Example — Kinematic Chariot Model

Select a mobile frame in the middle of the two wheels, the second
axis pointing forward:

KRRk

Fixed wheel orientations v; = v = 0.

+e
0

=13 8] an=[83 32

We have dim ker C(y) = 2. We may pick

X(y) =

o = O

0
0|, neR?
1



That choice leads to:

x = —(sinf)m
y = +(cosO)m
0 = m
rgr = Mm—exn
rgp = mtexn

Hence:

» 11 is the linear velocity of the center of the mobile frame,
> 1) is the chassis angular velocity.



Example — Kinematic Bicycle Model
Select a mobile frame centered on the fixed wheel, the second axis

pointing forward:

5)-[3] ()12

Fixed wheel v; = 0, orientable wheel v».

1 0 0
) = l cosvya sinya —fcosvym 1
0 1 0
Sv) = [ —siny, cosvya £sinvy 1
We have dim ker C(y) = 1. We may pick

0
Z(’Y) = CO572 » 1€ R
siny /¢



That choice leads to:

X = —(sinfcosy2)m
y = +(cos 6 cosy2)m
0 = (siny2/0)m

rg1 = (cosy2)m

rg2 = m

Hence:

> 1)1 is the linear velocity of the front wheel.



Example - Dynamic Chariot Model

Kinetic Energy: if the mass M of the chassis is uniformly
distributed on a disk of radius r centered in the middle of the
wheels, the mass density p satisfies:

| M/(me?) iR+ P < €
plxy) = 0 otherwise.

The kinetic energy is
1. . : 1 5
K= MG+ 34+ =16
2 2
where the moment of inertia is given by:

2
I= /p(xvy)(x2 +y)dxdy = MTG



The mass matrix of the (reduced) system with generalized
coordinates g = ¢ is:

M(&) =

oo§

0
M
0 2

<
o0 ©
~

This matrix is independant of &, therefore the Coriolis and
centrifugal forces are 0. Moreover

—sing 0

S(§)=| +cosh 0
0 1

gy 998)
- M) = =0

Mi(&) = S(€) M(E)S(E) = l : Meg/2 ]



The generalized (motor) forces f that correspond to the generalized
coordinates £ = (x,y, 0) are:

f=

0 <hxh

where (fx, fy) are the cartesian coordinates of the motor force

exerted on the center of the mobile frame and c is the torque
applied to the chassis.

Consequently, the kinematic equations are supplemented by:

Mx 1 = —fcsinf+ f,cost
Me?/2 x 1 = ¢



Structural Properties - Typology of Mobile Robots

The type of a wheeled mobile robot is a pair (dm, ds) where:

> 0, is the degree of mobility: the number of degrees of
freedom in a given wheel configuration:

dm = dimker C(y) = dim{admissible ICR} + 1

» s is the degree of steerability:
the extra number of degrees of freedom associated to
orientable wheels.

Robots with the same type share similar structural properties.



