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Abstract

We study the shape sensitivity of the stationary Navier-Stokes

Equations in the general case of non-homogeneous and shape-dependent

forces and boundary conditions.

Under an assumption of non-singularity of the equations, the shape

differentiability of the velocity and the pressure are obtained in some

Sobolev spaces. The influence of the regularity of the geometrical and

functional data on the best space for which the result holds is stressed.

We apply these results on a class of shape functionals where a high

regularity is required : the lagrangian functionals. Their main char-

acteristic is to take into account the paths of the fluid particles. The

usual shape calculus is extended to take into account such features. We

determine the shape derivative of a shape-dependent flow and develop

the methods to achieve the explicit calculation of the shape gradient.

1 Introduction

1.1 The Navier-Stokes Equations

We consider the stationary incompressible Navier-Stokes Equations (NSE)
in some smooth enough open and bounded sets Ω ⊂ R

3 of boundary Γ

−ν∆u+ (u·∇)u+∇p = f in Ω
div u = 0 in Ω

u = g on Γ
(1)
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The shape analysis will therefore include as special cases the situation where
the flow is uniquely driven by the force field (with homogeneous Dirichlet
boundary conditions, cf. [3]), as well as the one where the flow is induced by
a body moving at a constant velocity (cf. [1]).

Moreover, for a greater generality, we assume that the data (f, g) may
explicitly depend on the shape Ω. For a given set Ω, the corresponding value
of f , denoted fΩ, is a priori defined only on Ω (and gΓ only on Γ). We
assume that fΩ ∈ H−1(Ω;R3), gΓ ∈ H1/2(Γ;R3) and moreover that for any
admissible set Ω, and for any connected component Λ of Γ, we have

∫

Λ

〈gΓ, n〉R3 dH
2 = 0 (2)

(nΩ, or simply n when no doubt is possible, is the unit outer normal to Ω).
We recall briefly the corresponding abstract setting. We denote by V 1(Ω)

the space {u ∈ H1(Ω;R3), div u = 0}, we set V 1
0 (Ω) = V 1(Ω) ∩ H1

0 (Ω;R
3)

and V 1/2(Γ) = {g ∈ H1/2(Γ;R3),
∫

Γ
〈g, n〉 dH2 = 0}. The linear operator

π : H−1(Ω;R3) → (V 1
0 (Ω))

′ is Leray’s projector: π(f) is the restriction of
the linear form f on H1

0 (Ω;R
3) to V 1

0 (Ω). For any u and v ∈ V 1(Ω), we set
Au = −π(∆u) and B(u, v) = π((u · ∇)v). The (nonlinear) Navier-Stokes
operator is the mapping

F :
V 1(Ω) → V 1

0 (Ω)
′ × V 1/2(Γ)

u 7→ (νAu+ B(u, u), u|Γ)
(3)

1.2 Shape Analysis framework

The shape sensitivity of this equation is studied in the framework of the
Speed Method. The first step is to generate some of the geometries around
the reference set Ω while staying in a given design region. In that purpose,
we associate to a smooth, open and bounded set D (designed later on as the
hold-all), a velocity space V , chosen among the Vk for a k ≥ 1

Vk = {V ∈ C0([−T ;T ]; Ck(D;R3)), 〈V, nD〉R3 = 0 on ∂D} (4)

Then for any V ∈ V , a one-parameter family of deformations Ts : D → D is
given by the following initial-value problem

∂sTs = V (s) ◦ Ts
T0 = I

(5)

We denote Ωs := Ts(Ω) the corresponding transported sets generated by Ω
and V . We also set Γs := Ts(Γ).

2



The regularity of shape-dependent mappings such as f and g are de-
fined in the following way. Let W (Ω) be either one of the Sobolev spaces
Wm,p(Ω;Rm) (m ≥ 0, p ≥ 1) or one of the spaces Ck(Ω;Rm) (k ≥ 0).

Definition 1 We say that the mapping f is Ck with respect to the shape in
W (Ω) if for any V ∈ V, the mapping s 7→ fΩs

◦ Ts is in Ck(I;W (Ω)) on a
neighbourhood I of 0.

The shape sensitivity results of the section 2 are expressed in Sobolev
spaces whereas the Ck-spaces are needed for the study of the lagrangian
functionals (section 3).

Of course, an analogous definition holds for the shape-dependent map-
pings g defined on the boundary Γ. Two different types of derivatives with
respect to the geometry may be used to describe the variations of these fields
: the material derivative of f and g, given by

ḟΩ =
d

ds
fΩs

◦ Ts|s=0 and ġΓ =
d

ds
gΓs

◦ Ts|s=0 (6)

and the shape derivative and boundary shape derivative

f ′

Ω = ḟΩ − DfΩ · V (0) and g′Γ = ġΓ − DτgΓ · V (0) (7)

(Dτg is the tangential Jacobian matrix of g). When the choice of Ω is clear,
the corresponding subscript may be dropped.

In order to characterize the regularity of shape-dependent forces f that
belong to H−1(Ω;R3), we define φs : H1

0 (Ω;R
3) → H1

0 (Ωs;R
3) by φs(f) =

f ◦ T−1
s and set γs = detDTs (see also section 2.2). Then for W (Ω) =

H−1(Ω;R3), s 7→ fΩs
◦ Ts has to be replaced by s 7→ γ−1

s φ⋆
s(fΩs

) in the
definition 1 as well as in the definition of the material derivative (formula
(6)). This extension of the definition is consistent : these two expressions are
equal when fΩ belongs to L2(Ω;R3). The shape derivative (when it exist) is
still given by the equation (7).

2 Sensitivity Results

In this section, we derive a result on the regularity of the solution (u, p) of
the Navier-Stokes Equations with respect to a perturbation of the boundary.
The first part is dedicated to the description of the set of assumptions and
of the statement of the result. The corresponding proof is developed in the
sections (2.2) to (2.4).
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2.1 Assumptions and Main Statement

First, we describe the regularity needed on the geometrical and functional
data to derive our sensitivity result. The degree of regularity is given, in this
assumption as well as in the proposition by an integer k ≥ 1.

(A1: Regularity of the data)
• Ω and D are Ck+1 and the velocity space V is Vk+2.
• the mappings f and g are continuous with respect to the shape in

Hk−1(Ω;R3) and Hk+1/2(Γ;R3) respectively.
• the mappings f and g are continuously differentiable with respect to

the shape in Hk−2(Ω;R3) and Hk−1/2(Γ;R3) respectively.

Remark 1 This set of assumptions is rather designed to handle the high
regularity case, even if the methods developed in the following sections could
be used as well to study the situations where such a regularity is not available.

The smoothness of the geometry is determined so that the regularity of
the solutions of the Navier-Stokes Equations is maximal with respect to the
known regularity of f and g.

The assumptions made for these mappings may be surprising at first: the
spatial regularity of f and ḟ on one hand, of g and ġ on the other hand, are
not the same. However this is the usual situation; when f does not depend
on Ω, that is when there is for any V ∈ V a F ∈ Hk(D;R3) such that
fΩs

= F |Ωs
, the existence of ḟ takes place a priori only in Hk−1, the material

derivative being given by ḟ = 〈Dxf, V (0)〉. An analogous property holds for
g.

An interesting consequence of that gap is that the material and shape
derivatives of the data have the same spatial regularity as

f ′

Ω = ḟΩ − DfΩ · V (0) and g′Γ = ġΓ − DτgΓ · V (0)

The theorem 1 shows that the solutions u and p of the Navier-Stokes Equa-
tions exhibit the same kind of regularity. Therefore, the same property holds
for their derivatives with respect to the shape.

The second assumption, less common, results from the non-linearity of
the Navier-Stokes Equations: it has no equivalent for the linear shape op-
timization problems as the linearized problem is automatically well-posed
when the initial one is.

(A2: Non-Singularity of the NSE) The couple (fΩ, gΓ) is a regular value
of the Navier-Stokes operator (3): for any solution u of the system (1), the
operator DF (u) is an isomorphism.
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Remark 2 Explicitly, the assumption A2 states that for any k ∈ H−1(Ω;R3),
l ∈ H1/2(Γ;R3) such that

∫

Γ
〈k, n〉 dH2 = 0 and any solution of the Navier-

Stokes Equations, the system

−ν∆v + (u·∇)v + (v ·∇)u+∇q = h in Ω
div v = 0 in Ω

v = k on Γ
(8)

has a unique solution (v, q) ∈ H1(Ω;R3)× L2(Ω;R)/R.
This assumption is naturally fulfilled in the high viscosity (or small data)

case: when ν large enough with respect to the data (f, g) or conversely when
f and g are small enough in H1(Ω;R3) and H1/2(Γ;R3) for a given viscosity
ν, then the linearized Navier-Stokes Equations at the considered solution are
well-posed.

In general, without such an assumption on the viscosity, the Navier-Stokes
operator is still generically non-singular with respect to (f, g) or even with
respect to g for a fixed value of f (see [6], [9]). However, the well-posedness
of the linearized problem is ensured only in more regular (Hölder or Sobolev)
spaces than those considered in the section 1.1.

We may now state the main result of this section:

Theorem 1 Assume that A1 and A2 are satisfied. Let (u, p) be a solution
of the Navier-Stokes Equations in Ω. Then, for any V ∈ V, there is a
neighbourhood I of 0 in R and a locally unique family s ∈ I 7→ (us, ps) of
solutions of the Navier-Stokes Equations in Ωs such that:

(i) Initial Condition: (u0, p0) = (u, p)

(ii) Regularity: (U ,P) : [s 7→ (us ◦ Ts, ps ◦ Ts)] is such that
• U ∈ C0(I;Hk+1(Ω;R3)) ∩ C1(I;Hk(Ω;R3))
• P ∈ C0(I;Hk(Ω;R3)/R) ∩ C1(I;Hk−1(Ω;R3)/R)

(iii) Shape Derivatives: u′ and p′ are the solutions of

−ν∆u′ + (u·∇)u′ + (u′ ·∇)u+∇p′ = f ′ in Ω

div u′ = 0 in Ω

u′ = −
∂u

∂n
〈V (0), n〉+ g′Γ on Γ

(9)

2.2 Transport

We develop a modification of the process of transported equation which is used
to characterize the regularity with respect to the shape of the solutions of a

5



PDE problem. Usually, we associate to any V ∈ V the family of one-to-one
correspondences (φs)s∈R

φs

(

W (Ω) → W (Ωs)
u 7→ u ◦ T−1

s

)

(10)

whereW (Ω) andW (Ωs) are the adequate functional spaces for the considered
problem) and we study the properties of the problem satisfied by φ−1

s (uΩs
)

where uΩs
is the solution of the initial problem in Ωs; this transported prob-

lem is expressed in the fixed space Ω. However, such an approach is not
straightforward here because the transport of the compatibility condition (2)
would not in general lead to fixed functional spaces: this property is directly
true for homogeneous Dirichlet boundary conditions or with a slight adap-
tation for the non-homogeneous case u|Γ = g when g does not depend on the
shape Γ (cf. [1] ). However, this does not include the general case.

In order to circumvent that problem, we introduce the Piola transforma-
tions ψs : L

2(Ω;R3) → L2(Ωs;R
3), defined by :

ψs(u) = φs(γ
−1
s Js · u) (11)

with Js = DTs and γs = det(Js). These coefficients satisfy the following
lemma.

Lemma 1 For any V ∈ Vk, and any s ∈ R, Js and γs are invertible.
Moreover, Js and J−1

s are in C1(R; Ck−1(D;R3×3)) and γs and γ−1
s are in

C1(R; Ck−1(D;R)).

The proof is a direct consequence of the regularity of s 7→ Ts described in
[10]. Most of the classical properties of the φs are also satisfied by the ψs.
For any k ≥ 1, V ∈ Vk+1 and s ∈ R,

• φs and ψs are isomorphisms between L2(Ω;R3) and L2(Ωs;R
3) ; their

inverse are given by:

φ−1
s (u) = u ◦ Ts and ψ−1

s (u) = γsJ
−1
s φ−1

s (u)

• The regularity of the mappings are preserved through the transport: for
any integer m ≤ k, φs and ψs induce isomorphisms between Hm(Ω;R3) and
Hm(Ωs;R

3). As Dm(Ω) is also mapped into Dm(Ωs), the adjoint operators
φ⋆
s and ψ⋆

s are isomorphisms from H−m(Ωs;R
3) to H−m(Ω;R3).

• the same property hold for boundary Sobolev spaces: for any inte-
ger m such that m + 1/2 ≤ k, φs and ψs induce isomorphisms between
Hm+1/2(Γ;R3) and Hm+1/2(Γs;R

3).

Moreover, ψs satisfies the two extra following properties:
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Proposition 1 Let V ∈ V2 and s ∈ R. For any u ∈ L2(Ω;R3) and ϕ ∈
H1

0 (Ω;R
3), we have

〈div u, ϕ〉H−1×H1
0

= 〈div(ψsu), φsϕ〉H−1×H1
0

(12)

Therefore ψs also induce an isomorphism between V 1(Ω) and V 1(Ωs). More-
over, for any u ∈ H1(Ω;R3) and ϕ ∈ H1(Ω;R3),

∫

Γs

〈ψs(u), nΩs
〉
R3 φs(ϕ) dH

2 =

∫

Γ

〈u, nΩ〉R3 ϕdH
2 (13)

Proof – By a change of variable, we have the equality

〈divψs(u), φs(ϕ)〉H−1×H1
0

= −

∫

Ωs

〈ψs(u),∇(φs(ϕ))〉 dx

= −

∫

Ω

〈

ψs(u) ◦ Ts,∇(φs(ϕ)) ◦ Ts

〉

γs dx

As ∇(φs(ϕ)) ◦ Ts = ∇(ϕ ◦ T−1
s ) ◦ Ts = [DT ∗

s ]
−1∇ϕ, we obtain as desired

〈divψs(u), φs(ϕ)〉H−1×H1
0

= −

∫

Ω

〈

γsJ
−1
s ψs(u) ◦ Ts,∇ϕ

〉

dx

= −

∫

Ω

〈u,∇ϕ〉 dx

= 〈div u, ϕ〉H−1×H1
0

To establish the equality 13, we make the same change of variable. It yields
∫

Γs

〈ψs(u), nΩs
〉φs(ϕ) dH

2 =

∫

Γ

〈ψs(u) ◦ Ts, nΩs
◦ Ts〉 (φs(ϕ) ◦ Ts)ωs dH

2

with ωs = γs‖(J
∗
s )

−1nΩ‖. As nΩs
◦ Ts =

(J∗
s )

−1nΩ

‖(J∗
s )

−1nΩ‖
, we finally obtain

∫

Γs

〈ψs(u), nΩs
〉φs(ϕ) dH

2 =

∫

Γ

〈u, nΩ〉ϕdH
2

�

Remark 3 In the process of definition if the material derivative, described
in the section 1.1, we could replace the mappings φs by the ψs and therefore
defined the Piola material derivative of f , ḟP , by

ḟP
Ω =

d

ds
ψ−1
s (fΩs

)|s=0
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In the case of a volume-preserving transformation, that is when div V = 0
and γs = 1, the mapping ψ−1

s reduces to an intrinsic transformation widely
used in differential geometry (see for example [2]). The shape derivative of
f is then simply deduced from the Piola derivative by the formula

f ′

Ω = ḟP
Ω − [V (0), fΩ]

where [·, ·] are the Lie brackets.

2.3 Transported Equation

We prove in this section the part of the theorem 1 dedicated to the existence
and uniqueness of s 7→ (us, ps). We introduce the operators

As = ψ⋆
s ◦ A ◦ ψs and Bs = ψ⋆

s ◦B ◦ (ψs, ψs) (14)

and we call Transported Navier-Stokes Equations the system

νAsu+ Bs(u, u) = ψ⋆
s(π(fΩs

))
u|Γ = ψ⋆

s(gΓs)
(15)

From the very definition of the operators, a field u ∈ H1(Ω;R3) is a
solution of the transported Navier-Stokes Equations if and only if ψs(u) is a
solution of the Navier-Stokes Equations in Ωs. This is the key property for
the analysis of s 7→ us which is made first. The regularity with respect of the
shape of the pressure is deduced as a consequence in the following section.

2.3.1 Regularity of the velocity with respect to the shape

The results concerning s 7→ us are consequences of the implicit function
theorem applied to the mapping Ψ defined by

Ψ(s, u) = (νAsu+Bs(u, u)− ψ⋆
s(π(fΩs

)) , u− ψ⋆
s(gΓs)) (16)

The implicit function theorem is in fact applied twice: a first time to obtain
the continuity in Hk+1 and then to get the continuous differentiability in Hk

only. The functional spaces involved in the theorem are

Fk =
{

u ∈ Hk(Ω;R3), div u = 0
}

, Gk =
{

f ∈ π
(

Hk−2(Ω;R3)
)}

(17)

this latter space being endowed by the norm induced by Hk−2(Ω;R3), and

Hk =

{

g ∈ Hk−1/2(Γ;R3),

∫

Γ

〈g, n〉 dH2 = 0

}

(18)
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Let (u0, p0) be the initial solution chosen of the Navier-Stokes Equations
in the initial geometry. We have to check the following properties for Ψ:

(i) The continuity of Ψ : R × Fk+1 → Gk+1 × Hk+1, the existence of
∂uΨ(s, u) anywhere and its continuity in in (0, u0). The continuous differen-
tiability of Ψ as a mapping from R×Fk to Gk ×Hk.

(ii) The initial solution u0 belongs to Fk+1 and the mapping ∂uΨ(0, u0)
is an isomorphism from Fk to Gk ×Hk as well as from Fk+1 to Gk+1 ×Hk+1.

The properties in (i) are consequences of the explicit expression of the
transported operators. Simple calculations show that

ψ⋆
s∆ψs(u) = γ−1

s J∗

s · div(D(γ−1
s Jsu)γsJ

−1
s (J−1

s )∗) (19)

ψ⋆
s((ψs(u) · ∇)ψs(v)) = γ−1

s J∗

s (u · ∇)(γ−1
s Jsv) (20)

The desired regularity is obtained from the properties of the trilinear form
(u, v, w) 7→

∫

Ω
uvw dx (see [6], [3]). The same properties also yield with a

bootstrap method the properties (ii) as the existence is already known for the
solution of the Navier-Stokes Equations and also for the linearized equation
from the assumption A2. Notice that the only thing that prevents Ψ to be
continuously differentiable from R×Fk+1 to Gk+1×Hk+1 is the fact that the
data f and g are not regular enough.

As a consequence of (i) and (ii), the implicit function theorem asserts that
there is a neighbourhood I ⊂ R of 0, a unique family (us)s∈I of solutions of the
Navier-Stokes Equations in Ωs such that s 7→ ψ−1

s (us) ∈ C0(I;Hk+1(Ω;R3))
and s 7→ ψ−1

s (us) ∈ C1(I;Hk(Ω;R3)). From the definition of ψs we deduce
that the same regularity is obtained for the mapping s 7→ φ−1

s (us).

2.3.2 Regularity of the pressure

The result of the theorem 1 concerning the pressure is obtained by the
same transport methods but applied on the classical form of the Navier-
Stokes Equations, without using the projector π. We notice that ψ⋆

s(∇ps) =
∇φ−1

s (ps) and therefore that any solution ps of the Navier-Stokes Equations
in Ωs is subject to

∇φ−1
s (ps) = ν · ψ⋆

s∆us − ψ⋆
s((us · ∇)us) + ψ⋆

s(fΩs
)

That equation and the results of the previous section yield the desired regu-
larity of s 7→ φ−1

s (ps).

2.4 Shape Derivative and Linearized Equation

In order to establish the equation satisfied by the shape derivatives of u
and p, we may use extensions of these shape-dependent mappings. Thanks
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to the regularity of s 7→ us and s 7→ ps, there exist two mappings U ∈
C1(R;H1(D;R3)) and P ∈ C1(R;L2(D;R)) such that for s small enough, we
have uΩs

= U(s)|Ωs
and pΩs

= P (s)|Ωs
. Then, the shape derivatives are given

by u′Ω = ∂sU(0) and p′Ω = ∂sP (0).
However, this method cannot be applied directly to the right-hand side

f for the minimal regularity (k = 1). But the shape derivative of f may still
be characterized weakly by the following lemma.

Lemma 2 Let f be a shape-dependent mapping which is C0 w.r. to the
shape in L2(Ω;R3) and C1 w.r. to the shape in H−1(Ω;R3). Then for any
ϕ ∈ D(Ω;R3), the function

s 7→

∫

R3

〈fΩs
, ϕ〉

R3 dx

is differentiable at s = 0 and its derivative is given by

∂

∂s

(
∫

R3

〈fΩs
, ϕ〉

R3 dx

)

∣

∣

∣s=0 = 〈f ′

Ω, ϕ〉H−1×H1
0

(21)

Proof – From the definition of the mappings φs, we deduce that

∫

R3

〈fΩs
, ϕ〉

R3 dx =
〈

γ−1
s φ⋆

s(fΩs
), γsϕ ◦ Ts

〉

H−1×H1
0

Both arguments of the duality brackets are strongly differentiable. That
proves the existence of the derivative. By definition of the material derivative,
we have ḟΩ = ∂

∂s
γ−1
s φ⋆

s(fΩs
)|s=0 and clearly, ∂

∂s
γsϕ ◦ Ts|s=0 = div V (0) · ϕ +

Dϕ · V (0) = div(ϕ⊗ V (0)). Consequently, we have

∂

∂s

(
∫

R3

〈fΩs
, ϕ〉

R3 dx

)

∣

∣

∣s=0 =
〈

ḟΩ, ϕ
〉

H−1×H1
0

+

∫

R3

〈fΩ, div(ϕ⊗ V (0))〉
R3 dx

On the other hand, as

∫

R3

〈fΩ, div(ϕ⊗ V (0))〉
R3 dx = −〈DfΩ, ϕ⊗ V (0)〉H−1×H1

0

= −〈DfΩ · V (0), ϕ〉H−1×H1
0

using the definition of f ′
Ω, we obtain the equality (21). �
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Let ϕ ∈ D(R3;R3) such that Supp(ϕ) ⊂ Ω. For small values of s, the
support of ϕ is also included in Ωs and therefore

∫

D

ν∂xU(s) ·· ∂xϕ+ 〈∂xU(s) · U(s), ϕ〉R3 dx

=

∫

R3

P (s) · divϕ+ 〈fΩs
, ϕ〉

R3 dx

The differentiation of this equation with respect to s gives

∫

D

ν∂x∂sU(0) ·· ∂xϕ+ 〈[∂x∂sU(0)]U(0) + [∂xU(0)]∂sU(0), ϕ〉R3 dx

=

∫

D

∂sP (0) · divϕdx+ 〈f ′

Ω, ϕ〉H−1×H1
0

which implies that u′ and p′ are solutions of (9). The equation div u′ = 0
is a direct consequence of div us = 0 and of the existence of the extension
s 7→ U(s).

The boundary condition is proved as follows. As u|Γ = gΓ, u
′
Γ = g′Γ. On

the other hand

u′Γ = u′|Γ +
∂u

∂n
〈V (0), n〉

therefore, we obtain the desired Dirichlet boundary condition.

3 Lagrangian Functionals

In order to investigate the sensitivity of shape functionals of lagrangian type,
we state some sensitivity results for the solutions of the ordinary differential
equations. The analysis is done for time-dependent mappings with values in
Ck spaces rather than in the classical framework of two-variable mappings
(time and space).

Before this, we briefly analyze the shape differentiability of a simple dis-
tributed shape functional. The corresponding results are needed as tools for
the analysis of the lagrangian functionals.

3.1 Shape Differentiability of a distributed functional

From now on, we assume that the data considered in the theorem 1 satisfy the
assumptions A1 with k = 1 and A2. Let ρ : R3 → R

3 be a C1 function whose
support is compactly included in the reference set Ω0 ⊂ D. We consider the
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(possibly multi-valued) shape functional J , given by

J(Ω) =

∫

Ω

〈ρ, u〉
R3 dx (22)

where u is a solution of the system of equations (1). For any V ∈ V and any
solution u0 of the Navier-Stokes Equations in Ω0, the theorem 1 provides a
family (us)s∈I that determines uniquely a value of the shape functional in
Ωs, value still denoted J(Ωs). As a consequence of the regularity of (us)s∈I
given in the theorem 1 and by the Reynolds formula (see [10]), the eulerian
derivative of J in the direction V ∈ V , defined as dJ(Ω;V ) = d

ds
J(Ωs)|s=0,

exists and is given by

dJ(Ω;V ) =

∫

Ω

〈ρ, u′〉 dx (23)

where u′ is the solution of (9). The introduction of the corresponding adjoint
system allows further simplifications:

−ν∆η − Dη · u0 + [Du0]
∗ · η +∇π = ρ in Ω0

div η = 0 in Ω0

η = 0 on Γ0

(24)

The assumption A2 ensures the existence and uniqueness of the solution η.
The regularity of u, deduced from the assumption A1 and a bootstrapping
method shows that η ∈ H2(Ω;R3). Therefore, we have

dJ(Ω;V ) =

∫

Ω

〈−ν∆η − Dη · u0 + [Du0]
∗ · η +∇π, u′〉 dx

=

∫

Ω

〈η, f ′

Ω〉 dx+

∫

Γ

〈

−ν
∂η

∂n
+ πn, u′

〉

dx

=

∫

Ω

〈η, f ′

Ω〉 dx+

∫

Γ

〈

−ν
∂η

∂n
+ πn , g′Γ −

∂u

∂n
〈V (0), n〉

〉

dx

This expression may be rewritten in terms of stress tensor. We associate to
u ∈ H1(Ω;R3) and p ∈ L2(Ω;R) the matrix

σ(u, p) = pI − ν(Du+ Du∗) (25)

Some additional information on the structure of the normal component of
σ(u, p) on the boundary may be obtained. Let Dτ and divτ be respectively
the tangential Jacobian and the tangential divergence operators. We state
the
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Lemma 3 Let u be a divergence-free field of H2(Ω;R3) such that u|Γ = h.
Then, we have

Du∗n = [Dτh
∗ − (divτh)I]n (26)

Proof – Using the decomposition of the operators D and div on the bound-
ary, we obtain

Du = Dτh+
∂u

∂n
⊗ n and div u = divτh+

〈

∂u

∂n
, n

〉

= 0 (27)

Consequently, we have

[Du∗]n =

[

Dτh
∗ + n⊗

∂u

∂n

]

n

= [Dτh
∗]n+

〈

∂u

∂n
, n

〉

n

= [Dτh
∗ − (divτh)I]n

�

As a direct consequence of that lemma, the derivative of J is equal to

dJ(Ω;V ) =

∫

Ω

〈η, f ′

Ω〉 dx+

∫

Γ

〈

σ(η, π)n , g′Γ −
∂u

∂n
〈V (0), n〉

〉

dH2 (28)

3.2 Shape derivation of the velocity flow

3.2.1 Sensitivity in the ODEs

In this section, K is a compact set of Rn such that D ⊂ K and T > 0. We
define the set H = {f ∈ C0(Rn;Rn), Supp(f) ⊂ K} and denote ‖ · ‖k the
usual norm on the set Ck(A;F ). If F is itself of the form F = Cl(B;G), we
also use the notation ‖ · ‖k,l.

Lemma 4 The mappings

C0([−T ;T ]; C0(D;R))2 → C0([−T ;T ]; C0(D;R))
(f, g) 7→ fg

and

C0([−T ;T ];H)× C0([−T ;T ]; C0(D;Rn)) → C0([−T ;T ]; C0(D;Rn))
(f, g) 7→ [t 7→ f(t) ◦ g(t)]

are continuous.

13



Proof –
i) clear (remember that C0([−T ;T ]; C0(D;R)) ≃ C0([−T ;T ]×D;R)).
ii) for any f , f ′ in C0([−T ;T ];H), and g, g′ in C0([−T ;T ]; C0(D;Rn)), we

have
‖f ′ ◦ g′ − f ◦ g‖0,0 ≤ ‖f ′ − f‖0,0 + ‖f ◦ g′ − f ◦ g‖0,0

It is therefore enough to show the uniform equicontinuity of the family
(f(t))t∈[−T ;T ]. It is proved as follows: For any t ∈ [−T ;T ], and any ε > 0,
there is a η > 0 such that ‖x− y‖ < η implies ‖f(t)(x)− f(t)(y)‖ < ε/3 (by
uniform continuity of f(t)). Let τ > 0 be such that for any t′ ∈ [−T ;T ]∩]t−
τ ; t+ τ [, ‖f(t′)− f(t)‖0 < ε/3. Then, for any x and y such that ‖x− y‖ < η,
‖f(t′)(x) − f(t′)(y)‖ < ε. By compactness of [−T ;T ], the result is proved.
�

Assume that D is of class C2. Using an extension operator, we may
identify the velocity space V2 with a linear subspace of the set of continuous
mappings from [−T ;T ] to {f ∈ C2(Rn;Rn), Supp(f) ⊂ K}. For any mapping
ξ ∈ C1([−T ;T ]; C1(D;Rn)) and v ∈ V2, we set

H(ξ, v) = [t 7→ v(t) ◦ ξ(t)] (29)

and we state the

Lemma 5 The expression (29) defines a C1 mapping

H : C0([−T ;T ]; C1(D;Rn))× V2 → C0([−T ;T ]; C1(D;Rn))

whose differential is given by:

DH(ξ, v) · (ζ,W ) = ∂ξH(ξ, v) · ζ + ∂vH(ξ, v) ·W (30)

=
[

t 7→ [Dxv(t) ◦ ξ(t)] ζ(t) +W (t) ◦ ξ(t)
]

(31)

Proof – The mapping H is well-defined: indeed for any t ∈ [−T ;T ],
ξ belongs to C0([−T ;T ]; C1(D;Rn)) and v ∈ V2, the function H(ξ, v)(t)
is differentiable and Dx[H(ξ, v)(t)] = [Dxv(t)] ◦ ξ(t) · Dxξ(t). The lemma
4 yields that DxH(ξ, v) belongs to C0([−T ;T ]; C0(D;Rn×n)) and therefore
H(ξ, v) ∈ C0([−T ;T ]; C1(D;Rn×n)).

• Existence and continuity of ∂ξH: let Aξ,v be the linear operator ζ 7→
[

t 7→ Aξ,v(t)ζ(t)
]

with Aξ,v(t) = Dxv(t) ◦ ξ(t). The function Aξ,v(t) is dif-
ferentiable for any t ∈ [−T ;T ] and DxAξ,v(t) = [D2

xv(t) ◦ ξ(t)] [Dxξ(t)].
Therefore Aξ,v belongs to C0([−T ;T ]; C1(D;Rn)) and depends continuously
on (ξ, v) (lemma 4). Consequently, Aξ,v is a well-defined and continuous map-
ping from C0([−T ;T ]; C1(D;Rn)) to C0([−T ;T ]; C1(D;Rn)) and the mapping
(ξ, v) 7→ Aξ,v is continuous.

14



Let us prove the existence of ∂ξH and the equality ∂ξH(ξ, v) = Aξ,v. We
set

Σ = v ◦ (ξ + ζ)− v ◦ ξ − Dxv ◦ ξ · ζ (32)

Straightforward calculations show that for any i ∈ {1, ..., n}, DxΣi = Dxvi ◦
(ξ + ζ) · Dx(ξ + ζ)− Dxvi ◦ ξ · Dxξ − ζ∗ · [D2

xvi ◦ ξ] · Dxξ − Dxvi ◦ ξ · Dxζ and
therefore,

DxΣi = K∗

i · Dxξ + L∗

i · Dxζ (33)

with

{

Ki = Li − D
2
xvi ◦ ξ · ζ

Li = ∇xvi ◦ (ξ + ζ)−∇xvi ◦ ξ

We use the following intermediate result: we set ϕ = v or ϕ = ∇xvi for a
i ∈ {1, ..., n}. Then, there is a function ε : R+ → R+, independent of (t, x),
with limh→0 ε(h) = 0 and such that for any t ∈ [−T ;T ] and x ∈ R

n, the
inequality

‖ϕ(t)(x)− ϕ(t)(x+ h)− Dxϕ(t)(x) · h‖ = ε(h) · ‖h‖ (34)

holds. To prove this, we define ψ(t, x, h) = ϕ(t)(x+ h)−Dxϕ(t)(x) · (x+ h)
and notice that Dhψ(t, x, h) = Dxϕ(t)(x+h)−Dxϕ(t)(x). From the uniform
equicontinuity of (Dxϕ(t))t∈[−T ;T ] (see again the point ii) in the proof of
the lemma 4), we deduce that there is a function λ : R+ → R+ such that
limh→0 λ(h) = 0 and ‖Dhψ(t, x, h)‖ ≤ λ(h) . Therefore

ϕ(t)(x)− ϕ(t)(x+ h)− Dxϕ(t)(x) · h = ψ(t, x, 0)− ψ(t, x, h)

=

∫ 1

0

[Dhψ(t, x, θh)] · h dθ

and consequently, the equation (34) holds with ε(h) = supδ∈[0,h] λ(δ).
From this result, we deduce the inequalities ‖Σ‖0,0 ≤ ε(‖ζ‖0,1) · ‖ζ‖0,1,

‖Ki‖0,0 ≤ ε(‖ζ‖0,1) · ‖ζ‖0,1 and ‖Li‖0,0 ≤ (ε(‖ζ‖0,1) + ‖v‖V2
) · ‖ζ‖0,1. Finally,

using the expressions (32) and (33), we end up with

‖Σ‖0,0 + ‖DxΣ‖0,0 ≤ η(‖ζ‖0,1) · ‖ζ‖0,1 with lim
h→0

η(h) = 0 (35)

which proves the desired differentiability result.
• Existence and continuity of ∂vH: the existence and expression of ∂vH(ξ, v)

is clear: the mapping [v 7→ H(ξ, v)] is linear continuous and therefore ∂vH(ξ, v)·
W = H(ξ,W ). The continuity of this partial derivative is a direct conse-
quence of the lemma 4. �
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3.2.2 Differentiability of the flow

Let v be a vector field of V1. The corresponding flow is hereafter denoted Tv
or T (v) to emphasize its dependence on v; it is the solution of the initial-value
problem

∂tTv(t) = v(t) ◦ Tv(t)
Tv(0) = I

We know that T (v) belongs to C1([−T ;T ]; C1(D;Rn)) (see [10]). The follow-
ing proposition characterizes the regularity of the correspondence v 7→ T (v)
under a stronger assumption on the regularity of the variable v.

Proposition 2 The mapping

V2 → C1([−T ;T ]; C1(D;Rn))
v 7→ T (v)

is continuously differentiable. For any W ∈ V2, ζ = ∂vT (v)·W is the solution
of

∂tζ(t) = [Dxv(t) ◦ Tv(t)] · ζ(t) +W (t) ◦ Tv(t)
ζ(0) = 0

(36)

Proof – For any ξ ∈ C1([−T ;T ]; C1(D;Rn)) and v ∈ V2, we set

F (ξ, v) = ξ −

[

t 7→ I +

∫ t

0

v(τ) ◦ ξ(τ) dτ

]

(37)

The unique solution of F (ξ, v) = 0 is ξ = T (v). Moreover, from the lemma 5
we deduce that (ξ, v) 7→ F (ξ, v) is a C1 mapping from C1([−T ;T ]; C1(D;Rn))×
V2 to C1([−T ;T ]; C1(D;Rn)). Its differential is given by:

DF (ξ, v) · (ζ,W ) = ζ −

[

t 7→

∫ t

0

([Dxv(τ) ◦ ξ(τ)] · ζ(τ) +W (τ) ◦ ξ(τ)) dτ

]

Therefore, ∂ξF (ξ, v) is an isomorphism: for any φ ∈ C1([−T ;T ]; C1(D;Rn)),
we set ψ = ∂tφ. The mapping φ satisfies ∂ξF (ξ, v) · ζ = φ iff it is the solution
of

∂tζ(t) = [Dxv(τ) ◦ ξ(t)] · ζ(t) + ψ(t)
ζ(0) = φ(0)

which is given by

ζ(t) = U(0, t)φ(0) +

∫ t

0

U(t, τ)ψ(τ) dτ
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with U(s, t) = exp
(

∫ t

s
Dxv(τ) ◦ ξ(τ) dτ

)

.

The regularity of v 7→ T (v) is a consequence of the implicit function
theorem. The expression ζ = ∂vT (v) · W is solution of ∂ξF (ξ, v) · ζ =
−∂vF (ξ, v) ·W or equivalently, of the system (36). �

Now, we investigate the regularity with respect to the shape of a flow
based on a shape-dependent mapping v. We assume that this mapping sat-
isfies the following properties:

v is C1 w.r. to the shape in C2(Ω;R3) and C0 w.r. to the shape in
C3(Ω;R3). Moreover, for any admissible Ω, 〈vΩ, nΩ〉 = 0

(38)

We describe the regularity of the corresponding shape-dependent flow
T (v) by the regularity of its extensions to D.

Proposition 3 Let Ω ⊂ D be an open bounded set of class C3 such that either
Ω ⊂⊂ D or D − Ω is compactly included in D. Then, for any V ∈ V ⊂ V3

(i) There is a continuously differentiable mapping s 7→ Rs with values in
C1([−T ;T ]; C1(D;R3)) such that for any s ∈ R and t ∈ [−T ;T ], Rs(t) is an
extension of T (vΩs

)(t) to D.
(ii) The restriction S of ∂sRs|s=0 to Ω is the solution of

Ṡ(t) = v′ ◦ Tv(t) + [Dxv ◦ Tv(t)]S(t)
S(0) = 0

(39)

Proof – The assumption (38) yields the existence of a mapping w that
belongs to C1(R, C2(D;R3)) such that for any s ∈ R, w(s)|Ωs

= vΩs
. The

shape derivative v′Ω is equal to ∂sw(0)|Ω. We may moreover assume that
w(s) ∈ V2. Let Rs be the flow associated to w(s), solution of

∂tRs(t) = w(s) ◦Rs(t)
Rs(0) = I

(40)

Obviously, we have Rs(t)|Ωs
= TvΩs

(t) and the proposition 2 yields s 7→ Rs ∈

C1(R; C1([−T ;T ]; C1(D;R3))) and S̄ = ∂sRs|s=0 satisfies

∂tS̄(t) = ∂sw(0)(t) ◦ Tw(0)(t) + [Dxw(0)(t) ◦ Tw(0)(t)] · S̄(t)
S̄(0) = 0

(41)

which yields (39). �
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3.3 Shape Gradient of a Lagrangian Functional

Let ρ : [0, T ]×R
3 → R

3 be a C∞ function such that ∀ t ∈ [0, T ], Supp(ρ(t, ·)) ⊂
Ω. We consider the shape functional J , defined by

J(Ω) =

∫∫

[0,T ]×D

〈ρ(t, x), Tu(t)(x)〉 dtdx (42)

where u is solution of the Navier-Stokes Equations in Ω. We assume that
the assumptions A1 and A2 are satisfied with k = 4 and moreover that
〈g, nΩ〉R3 = 0 and either Ω ⊂⊂ D or D−Ω ⊂⊂ D. Under these assumptions,
the theorem 1 and the Sobolev injections imply that u satisfies the assump-
tions (38) and therefore the proposition 3 holds for the flow Tu. Consequently,
we have the

Proposition 4 The eulerian derivative of J exists and is given by

dJ(Ω;V ) =

∫

Ω

〈η, f ′

Ω〉 dx+

∫

Γ

〈

σ(η, π)n , g′Γ −
∂u

∂n
〈V (0), n〉

〉

dH2 (43)

where

Q̇(t) = −[Du∗]Q(t)− [DQ(t)]u− ρ(t, ·) ◦ [Tu(t)]
−1

Q(T ) = 0
(44)

and

−ν∆η − Dη · u+ [Du]∗ · η +∇π =
∫ T

0
Q(t) dt in Ω

div η = 0 in Ω
η = 0 on Γ

(45)

Proof – We introduce the adjoint equation where the adjoint state is P :

Ṗ (t) = −ρ(t, ·)− [Du ◦ Tu(t)]
∗ · P (t)

P (T ) = 0
(46)

Then, the eulerian derivative of J exists and thanks to the equation (39) we
obtain:

dJ(Ω;V ) =

∫∫

[0,T ]×Ω

〈ρ(t, ·), S(t)〉 dtdx

=

∫∫

[0,T ]×Ω

〈

−Ṗ (t)− [Du ◦ Tu(t)]
∗ · P (t) , S(t)

〉

dtdx

=

∫∫

[0,T ]×Ω

〈

P (t) , Ṡ(t)− [Du ◦ Tu(t)]S(t)
〉

dtdx

=

∫∫

[0,T ]×Ω

〈P (t) , u′ ◦ Tu(t)〉 dtdx
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This expression may be further simplified by the introduction of Q(t)

Q(t) = P (t) ◦ [Tu(t)]
−1 (47)

which is the solution of the PDE problem (44): the differentiation with re-
spect to t of the equation Q(t) ◦ Tu(t) = P (t) gives Q̇(t) ◦ Tu(t) + [DQ(t) ◦
Tu(t)] · Ṫu(t) = Ṗ (t) and therefore

Ṗ (t) ◦ [T u
t ]

−1 = Q̇(t) + DQ(t) · (Ṫ u
t ◦ [T u

t ]
−1)

The equation (44) simply results from the substitution of this equality in
(46). Then, as div u = 0, | detDT u

t | = 1 and by a change of variable, we find
that

dJ(Ω;V ) =

∫∫

[0,T ]×Ω

〈P (t) , u′ ◦ T u
t 〉 dtdx

=

∫∫

[0,T ]×Ω

〈Q(t) , u′〉 dtdx

=

∫

Ω

〈
∫ T

0

Q(t) dt , u′
〉

dx

so as a consequence of the section 3.1, we finally obtain the expression of the
eulerian derivative given in the proposition 4. �
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