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Abstract: The shape analysis of the Navier-Stokes equation has been already considered in the

literature. Classical techniques, such as the Implicit Function Theorem, may be used to show that

some functionals, the drag for example, are shape differentiable.

However, this property relies on results established for the basic regularity of the pressure and the

velocity fields. Many other criterions of physical interest are out of this scope: we consider here the

shape analysis of such functionals, for example, the (total) force exerted by the fluid on a body or the

moment of these forces. The velocity and pressure fields u and p are assumed to be solutions of the

stationary incompressible Navier-Stokes equation −ν∆u + [Du]u +∇p = f in Ω with the boundary

condition u|Γ = 0, Γ = ∂Ω.

These new results are based on the so-called speed method which allows us to “bring back”

vector fields from a perturbed domain to the initial one while preserving the divergence-free property.

Regularity results are established for that correspondence and used to define and show some properties

of the shape derivative u′ and of the boundary shape derivative u′

Γ
.
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1 Introduction

We study the shape differentability of functionals of the solutions (u, p) of the Navier-

Stokes Equation in Ω0 which are not defined for the minimal regularity of the solutions,
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for example because high-order derivatives or integrals on submanifolds appear in the

expression of these functionals.

In the framework of the Speed Method (section 3.1), some perturbed sets [s 7→ Ωs]

are associated to the initial set Ω0, the velocities us solutions of the Navier-Stokes

problem in the moving sets Ωs are associated to fields us in the fixed set Ω0 (section

3.2) which are solutions of the Transported Navier-Stokes Equation (section 3.3). The

definition of this equation uses the functional spaces introduced in the section 2. The

Implicit Function Theorem is then used to prove some regularity of [s 7→ us] for the

desired spatial regularity of u (section 3.4). This result allows us to show the existence

of the shape derivatives of u and p for a given spatial regularity and then, through

the development of a Tangential Calculus, their boundary shape derivatives (section

4). Theses objects are then intensively used to obtain the explicit form of the shape

gradient of the force and the moment of the forces applied by a fluid on a part of its

boundary (section 5).

2 The Navier-Stokes Equations

The Navier-Stokes problem in an open bounded set Ω ⊂ R
3 is classically written as















−ν∆u+ [Du]u+∇p = f in Ω (1.1)

div u = 0 in Ω (1.2)

u = 0 on ∂Ω (1.3)

(1)

where ν is the kinematic viscosity, u the velocity of the fluid, p the pressure and f

the force. The study of this equation requires functional spaces built as subspaces (to

deal with the fluid incompressibility (1.2) or the boundary value (1.3)) or quotients of

Sobolev spaces (to handle forces defined up to a gradient): for any integer m ≥ 1, we

define

V m(Ω) = {u ∈ Hm(Ω;R3) ∩H1
0 (Ω;R

3), div u = 0} (2)

endowed with the Hm(Ω;R3) norm and for any integer m ≥ −1, we set

Wm(Ω) = Hm(Ω;R3)/{∇p, p ∈ Hm+1(Ω;R)} (3)
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endowed with the quotient norm. The linear continuous mappings

i : V m(Ω) → Hm(Ω;R3) and π : Hm(Ω;R3) → Wm(Ω) (4)

are respectively the canonical injection and the quotient mapping.

Remark 1 Strictly speaking, we did not define uniquely the mappings i and π, but

only some sequences (im)m≥1 and (πm)m≥−1. It is obvious that when u ∈ Hm(Ω), for

any integer m′, 1 ≤ m′ ≤ m, im(u) = im′(u), so i is uniquely determined. For π,

we must first notice that for any −1 ≤ m′ ≤ m, the mapping πm(f) ∈ Wm(Ω) 7→

πm′(f) ∈ Wm′

(Ω) is well defined (that is, does not depends on the choice of f) and is

a linear continuous injection, so we may identify Wm(Ω) with a subspace of Wm′

(Ω).

With this convention, πm(f) = πm′(f) when the two expressions make sense, and π is

also well defined. Moreover, π(f) ∈ Wm(Ω) if and only if f may be decomposed as

f = g + ∇p, g ∈ Hm(Ω;R3) and p ∈ L2(Ω;R) (and not necessarily p ∈ Hm(Ω;R)):

the spaces Wm(Ω) characterize the best possible regularity of f “up to a gradient”

(whatever its regularity is).

Let D(Ω;R3) be the set of functions of C∞(R3;R3) whose support is compactly

included in Ω. We recall that if Ω is Lipschitz, V(Ω) = {v ∈ D(Ω;R3), div v = 0} is

dense in V 1(Ω). Consequently,

Proposition 1 The spaces W−1(Ω) and V 1(Ω)′ are isomorphic. Moreover,

∀f ∈ H−1(Ω;R3) π(f) = 0 ⇐⇒ ∀v ∈ V 1(Ω), < f, v >= 0

⇐⇒ ∀v ∈ V(Ω), < f, v >= 0
(5)

Proof: The linear continuous operator f ∈ H−1(Ω;R3) 7→ f |V 1(Ω) ∈ V 1(Ω)′ is clearly

onto and f ∈ H−1(Ω;R3) belongs its kernel iff

∀v ∈ V 1(Ω), < f, v >= 0 ⇐⇒ ∃p ∈ L2(Ω;R), f = ∇p ⇐⇒ π(f) = 0

(see [10] for the first equivalence), which proves the first part of (5), and that V 1(Ω)′ ≃

H−1(Ω;R3)/{∇p, p ∈ L2(Ω;R)} = W−1(Ω). The second equivalence follows by den-

sity. �
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The operators π and i will be used to show some regularity results for some (one-

variable or two-variable) mappings from V m(Ω) to Wm′

(Ω) which are build on map-

pings from Hm(Ω;R3) to Hm′

(Ω;R3) (as it is shown in the following definition) whose

regularity is known.

Definition 1 For any integer n and mapping T : (H1(Ω;R3))n → H−1(Ω;R3), we

define the mapping T̄ : (V 1(Ω))n → W−1(Ω) by

T̄ = π ◦ T ◦ (i⊗ i⊗ ...⊗ i) (6)

In particular, this construction is applied for the operators A and B defined by

< Au, ϕ >D′(Ω)×D(Ω)=

∫

Ω

Du··Dϕdx, < B(u, v), ϕ >D′(Ω)×D(Ω)=

∫

Ω

[Du]v · ϕdx (7)

for u ∈ H1
loc(Ω) and v ∈ L2

loc(Ω). These operators, used in the variational formulation

of (1), have the following regularity :

Proposition 2 For any integer n ≥ 1, A is a continuous mapping Hn(Ω;R3) →

Hn−2(Ω;R3). B is a continuous mapping H1(Ω;R3) × H1(Ω;R3) → H−1(Ω;R3) and

Hn(Ω;R3)×Hn(Ω;R3) → Hn−1(Ω;R3) for any integer n ≥ 2.

Sketch of the proof: The regularity of A is classical. The one of B is a consequence

of the continuity of the trilinear form

(u, v, w) ∈ Ha(Ω;R)×Hb(Ω;R)×Hc(Ω;R) 7→

∫

Ω

uvw dx

for nonnegative real numbers a, b, c such that a+ b+ c > 3/2 (see [4]). �

The proposition 1 shows that the usual variational formulation of the Navier-Stokes

problem is equivalent to the equation

νĀu+ B̄(u, u) = π(f) (8)

Moreover, the regularity of the Stokes equation combined with iterated evaluations

of the regularity of [Du]u shows that if Ω is of class Cr, r = max(2,m + 2), and f ∈

Hm(Ω;R3), m ≥ −1, any solution u of the Navier-Stokes equation is in Hm+2(Ω;R3).
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3 Transport

3.1 The Speed Method

In this section, we consider a hold-all D which contains the set Ω0 filled by the fluid

and a (time-dependent) vector field V defined on D which is used to define the family

of perturbed domain Ωs based on Ω0: each point x ∈ Ω0 is continuously transported

by the ODE defined by the field V . The parameter which controls the amplitude of

the deformation is denoted by s.

Precisely, the hold-all D is assumed to be a domain at least of class Ck, k ≥ 1

and s is in a (possibly infinite) interval I ⊂ R such that 0 ∈ I. The vector field V is

assumed to be an element of the set En,k(I,D) (or simply En,k) defined by:

En,k(I,D) =
{

V ∈ Cn(I;Ck(D;R3)) | ∀s ∈ I, V (s) · n = 0 on ∂D
}

(9)

where n denotes the unitary outer normal to D.

Then we may define the mapping s 7→ Ts(V ) (or simply Ts when there is no possible

confusion on the vector field) as the solution of

∀s ∈ I,
dTs

ds
= V (s) ◦ Ts, and T0 = Id (10)

and also the family of perturbed sets s 7→ Ωs by

Ωs = Ts(Ω0) (11)

We recall the following result which can be found in [9], [11]:

Proposition 3 Let V ∈ En,k(I,D), n ≥ 0, k ≥ 1, be a given vector field. Then

i) ∀s ∈ I, Ts(V ) : D → D and D → D are one-to-one mappings.

ii) s 7→ Ts(V ) ∈ Cn+1(I;Ck(D;D)) and s 7→ [Ts(V )]−1 ∈ Cn(I;Ck(D;D)).

iii) ∀s ∈ I, ∀x ∈ D, DTs(x) is invertible, and the mappings s 7→ DTs and s 7→

[DTs]
−1 are in Cn+1(I;Ck−1(D;R3×3)).

As a first consequence of this proposition, the family of perturbed sets has its boundary

regularity preserved for V smooth enough: if Ω0 is of class Cr, r ≤ k, then for any

s ∈ I, Ωs is also of class Cr.
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Remark 2 In order to make the future calculations easier, we define

γs = det(DTs) and Cs = γ−1
s DTs (12)

Notice that, as a simple consequence of the Proposition 3, for V ∈ En,k, n ≥ 0, k ≥ 1,

∀s ∈ I, γ−1
s = det([DTs]

−1) exists and moreover, γs and γ−1
s ∈ Cn+1(I;Ck−1(D;R3×3)).

As γ0 = 1, by continuity, ∀s ∈ I, γs > 0. Obviously, we also have the inversibility of

Cs for any s ∈ I and the regularity Cs and C−1
s ∈ Cn+1(I;Ck−1(D;R3×3)).

3.2 Correspondence between vector fields

The diffeomorphisms Ts defined in the previous section are used to build a corre-

spondence between the mappings defined on Ω0 and those defined on Ωs. As for any

s ∈ I, Ts and T−1
s are Lipschitz, the mapping [v 7→ v ◦ Ts] is an isomorphism between

H1
0 (Ωs;R) and H1

0 (Ω0;R) (see [8]) and the equation D[v ◦ Ts] = [Dv ◦ Ts]DTs holds.

Lemma 1 Assume that Ω0 is an open bounded subset of R3 and that V ∈ E0,2. Then

the mapping Ts, defined between functions Ω0 → R
3 and Ωs → R

3 by

Ts(u) ◦ Ts = Cs u (13)

is an isomorphism between V 1(Ω) and V 1(Ωs).

Proof: As for all s ∈ I, Cs and C−1
s are C1(D;R3×3) (see remark 2), Ts is an

isomorphism between H1
0 (Ω0;R

3) and H1
0 (Ωs;R

3). Moreover, for any u ∈ H1
0 (Ω0;R

3)

and ϕ ∈ H1
0 (Ωs;R

3), we have
∫

Ωs

div (Ts(u))ϕdx = −

∫

Ωs

Ts(u) · ∇ϕdx = −

∫

Ω0

(Ts(u) ◦ Ts) · (∇ϕ ◦ Ts) γs dx

and as ∇(ϕ ◦ Ts) = DT ∗
s (∇ϕ ◦ Ts),

∫

Ωs

div (Ts(u))ϕdx = −

∫

Ω0

(C−1
s Ts(u) ◦ Ts) · ∇(ϕ ◦ Ts) dx =

∫

Ω0

(div u)ϕ ◦ Ts dx = 0

The mapping ϕ 7→ ϕ ◦ Ts being an isomorphism between H1
0 (Ωs;R

3) and H1
0 (Ω0;R

3),

divTs(u) if and only if div u = 0 which achieves the proof. �

Remark 3 As Ts : H1
0 (Ω0;R

3) → H1
0 (Ωs;R

3) is an isomorphism, so is its adjoint

T
⋆
s : H

−1(Ωs;R
3) → H−1(Ω0;R

3).
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3.3 The Transported Navier-Stokes equations

In the sequel, the objects (operators, vector fields, duality brackets) associated to the

perturbed set Ωs will be noted with a subscript s. Many of them are used to defined

objects (by different means) associated to the initial set Ω0 ; they are noted with the

superscript s. Precisely, we define the following correspondences:

• Velocity fields us ∈ V 1(Ωs) (solutions of the Navier-Stokes equation in Ωs) and test

functions vs ∈ V 1(Ωs) are associated to the fields us ∈ V 1(Ω0) (resp. vs ∈ V 1(Ω0))

by :

us = T
−1
s (us) (resp. vs = T

−1
s (vs))

• Force fields fs ∈ H−1(Ωs;R
3) (or in H−1(D;R3)) are transported in f s ∈ H−1(Ω0;R

3)

(or in H−1(D;R3)) defined by

f s = T
⋆
s(fs)

• The (linear and bilinear) operators As and Bs from H1(Ωs;R
3) to H−1(Ωs;R

3)

defined by (7) are associated to As and Bs linear and bilinear from H1(Ω0;R
3) to

H−1(Ω0;R
3) by:

As = T
⋆
s ◦ A ◦ Ts and Bs = T

⋆
s ◦B ◦ (Ts ⊗ Ts) (14)

With these notations, we have

Theorem 1 Assume that V ∈ E0,k, k ≥ 2 and that f ∈ H−1(D;R3). The field

us ∈ V 1(Ωs) is a solution of the Navier-Stokes equation in Ωs if and only if us ∈ V 1(Ω0)

is a solution of

νĀsus + B̄s(us, us) = π(f s) (15)

The operators As and Bs satisfy for any u, v in H1(Ω0;R
3)

Asu = C⋆
sdiv

(

D[Csu]γ
−1
s C−1

s (C⋆
s )

−1
)

and Bs(u, v) = C⋆
sD(Csu) · v (16)

and for f ∈ L2(D;R3), we have

f s = [DTs]
∗(f ◦ Ts) (17)
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Remark 4 The pressure is not explicitly transported in the theorem 1. Nevertheless,

if ps ∈ L2(Ωs;R)/R is a pressure solution of the Navier-Stokes problem in Ωs, that is

if νAsus + Bs(us, us) +∇ps = f then it can be verified that

νAsus + Bs(us, us) +∇(ps ◦ Ts) = f s

It is therefore natural to define the transported pressure ps by

ps = ps ◦ Ts (18)

The operators involved in the equation 16 have the following regularity:

Proposition 4 Assume that V ∈ E0,m+1, m ≥ 1. Then

i) ∀s ∈ I, As (resp. Bs) are linear (resp. bilinear) continuous from Hm(Ω0;R
3) to

Hm−2(Ω0;R
3) .

ii) [s 7→ As] and [s 7→ Bs] are continuously differentiable in these spaces.

Proof: We know that for any integer n, Hn(Ω0;R) is a Cn(Ω0;R)-topological module,

so thanks to the regularity of [s 7→ γs], [s 7→ γ−1
s ], [s 7→ Cs] and [s 7→ C−1

s ] (see

remark 2), we may consider the continuous mappings Λ1
s : H

m(Ω0;R
3) → Hm(Ω0;R

3),

Λ2
s : Hm−1(Ω0;R

3×3) → Hm−1(Ω0;R
3×3) and Λ3

s : Hm−2(Ω0;R
3) → Hm−2(Ω0;R

3),

defined by Λ1
s(u) = Csu, Λ2

s(U) = Uγ−1
s C−1

s (C⋆
s )

−1 and Λ3
s(u) = C⋆

su.

As the operators As and Bs may be decomposed as sequences of linear (or bilinear)

continuous operators

As = Λ3
s ◦ div ◦ Λ2

s ◦D ◦ Λ1
s and Bs = Λ3

s ◦B ◦ (Λ1
s ⊗ Id)

the property i) is proved. Moreover, as the mappings [s 7→ Λi
s] are of class C1 on I,

ii) follows. �

3.4 Regularity of [s 7→ us]

Under the assumptions A1 and A2 described below, the theorem 2 characterize the

regularity of [s 7→ us].
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Assumption 1 (Regularity of the data) Let m ≥ 2 be a given integer.

• The initial set Ω0 is an open connected subset included in the hold-all D ⊂ R
3.

The sets Ω0 and D are respectively of class Cm+1 and Cm+2.

• The fields V considered in the speed method are in E1,m+2(I,D).

• The force field f is in Hm−1(D;R3).

Assumption 2 (Nonsingularity of u) The field u is a solution of the Navier-Stokes

equation in Ω0 such that the linearized Navier-Stokes equation

−ν∆v + [Du]v + [Dv]u+∇q = g (19)

has a unique solution v ∈ V 1(Ω0) for any g ∈ H−1(Ω0;R
3). Equivalently, the linear

operator L from V 1(Ω0) to W−1(Ω0) defined by L(v) = νĀ + B̄(u, v) + B̄(v, u) is an

isomorphism.

In particular this assumption is satisfied for high viscosities or small force fields :

for a given Ω0, there is a k(Ω0) > 0 such that with ν2/‖f‖H−1(Ω0;R3) > k(Ω0) this

assumption hold (see [5, lemma 3.2, p. 300]). This threshold also ensures the unicity

of the solution of the Navier-Stokes equation in Ω0.

Theorem 2 Assume that the assumptions A1 and A2 hold for a given solution u.

Then there is on a neighbourhood J ⊂ I of 0 a unique solution us = u(Ωs) of the

Navier-Stokes problem in Ωs such that

i) u0 = u. ii) [s 7→ us] ∈ C0(J ;V m+1(Ω0)) ∩ C1(J ;V m(Ω0)).

Proof of the theorem 2: Thanks to the theorem 1, us is a solution of the Navier-

Stokes equation in Ωs iff us is a solution of φ̄s(u) = 0 where

φs : Hm(Ω0;R
3) → Hm−2(Ω0;R

3)

u 7→ Asu+ Bs(u, u)− f s

The result of the theorem is proved by two different versions of the Implicit Function

Theorem for the same mapping but in different spaces: the mapping (s, u) 7→ φ̄s(u)

is considered as an application from I × V m+1(Ω0) to Wm−1(Ω0) and then stronger

properties are exhibited for this mapping defined from I × V m(Ω0) to Wm−2(Ω0).
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These properties comes from the results already shown for the operators As and Bs

and from the regularity

[s 7→ f ◦ Ts] ∈ C0(I;Hm−1(D;R3)) ∩ C1(I;Hm−2(D;R3))

which hold under the assumption A1 (see [9]). Precisely, it holds

• The solution u of the Navier-Stokes problem in Ω0 is in V m+1(Ω0) (see section 2)

and a fortiori in V m(Ω0). It satisfies φ̄0(u) = 0

• The mapping (s, u) → φs(u) is in C0(I × Hm+1(Ω0);H
m−1(Ω0)): (s, u) →

Asu + Bs(u, u) is in fact C1 in these spaces (see proposition 4) and [s 7→ f s] is in

C0(I;Hm−1(Ω0;R
3)).

• The real s ∈ I being fixed, for any m ≥ 1, u 7→ φs(u) is the sum of a

linear continuous, a bilinear continuous and a constant mapping Hm+1(Ω0;R
3) →

Hm−1(Ω0;R
3) and Hm(Ω0;R

3) → Hm−2(Ω0;R
3) (see proposition 4); u 7→ φs(u) is

therefore a C∞(V m(Ω0);W
m−2(Ω0)) and C∞(V m+1(Ω0);W

m−1(Ω0)) mapping. Conse-

quently, u 7→ φ̄s(u) as the same regularity (in both spaces).

• The proposition 4 also implies that for any m ≥ 1 and a fixed u ∈ V m(Ω0),

[s 7→ Asu+ Bs(u, u)] is in C1(I;Hm−2(Ω0)). The same regularity also for [s 7→ f s].

• As φ̄0 = π ◦φ0 ◦ i, we have ∂uφ̄0(u)(v) = (π ◦∂uφ0(u)◦ i)(v) for any u ∈ V m+1(Ω0)

(resp. u ∈ V m(Ω0)). As ∂uφ0(u)(v) = Av + B(u, v) + B(v, u), ∂uφ̄0(u) = L, which

is an isomorphism from V 1(Ω0) to W−1(Ω0) (assumption 2). Repeated evaluations of

the regularity of the bilinear terms show that in fact the solution v of L(v) = g is in

V m+1(Ω0) (resp. V m(Ω0)) when g ∈ Hm−1(Ω0;R
3) (resp. g ∈ Hm−2(Ω0;R

3)). �

4 The Shape Derivative u′ and p′

From now on, we assume that the data are chosen such that A1 and A2 are satisfied

for an given integer m ≥ 2. Consequently, the theorem 2 may be applied which allows

to show that the solution u and p of the Navier-Stokes problem are shape differentiable

in Hm and Hm−1 (see theorem 3) and that their shape derivative u′ and p′ are solutions

of a well-posed problem (see section 4.4).
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4.1 Definition and basic properties

In this section, we recall the basic facts about the shape derivative of a mapping

Ω 7→ y(Ω), defined for a given regularity of Ω. y is assumed to be a scalar field for a

simplified exposition, but the adaptation to the vectorial case is obvious.

We say that y is shape differentiable in Hn (resp. Cn) at Ω0 if for any field V of a

given regularity,

i) [s 7→ y(Ωs) ◦ Ts] is differentiable in Hn(Ω;R) (resp. Cn(Ω;R)) at s = 0. Its

derivative, noted ẏ(Ω) or simply ẏ is the material derivative.

ii) y(Ω) ∈ Hn+1(Ω;R) (resp. y ∈ Cn+1(Ω;R)).

and the shape derivative y′ ∈ Hn(Ω;R) (resp. Cn(Ω;R)) is given by:

y′ = ẏ −∇y · V (0) (20)

In particular, i) and ii) hold when y satisfies the stronger assumption

iii) [s 7→ y(Ωs) ◦ Ts] ∈ C0(I;Hn+1(Ω;R)) ∩ C1(I;Hn(Ω;R))

on a neighbourghood I of 0. If Ω is at least Cn+1, we may recover y′ as the derivative of

an extension of [s 7→ y(Ωs)]: we consider an linear extension P : L2(Ω;R) → L2(D;R)

such that for any integer r ≤ n+ 1, Hr(Ω;R) is mapped continuously into Hr(D;R).

We may then associate to the family [s 7→ y(Ωs)], the family [s 7→ Ys] defined on the

hold-all D by

Ys ◦ Ts = P (y(Ωs) ◦ Ts) (21)

As [s 7→ Ys ◦ Ts] ∈ C0(I;Hn+1(D;R)) ∩ C1(I;Hn(D;R)), [s 7→ Ys] ∈ C1(I;Hn(D;R))

and
∂Ys

∂s
(0) =

∂Ys ◦ Ts

∂s
(0)−∇Y0 · V (0)

(direct adaptation of [9, prop 2.38, p.71]), y′ is given as the restriction:

y′ =
∂Ys

∂s
(0)

∣

∣

∣Ω

Notice that the preceding construction a priori requires that y(Ω) is uniquely de-

fined when Ω is given. This construction easily extends to the case of multiple solutions

y(Ω) when the choice of a branch [s 7→ y(Ωs)] has been made.
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Theorem 3 Under the assumptions A1 and A2, the branch of solutions u of the

Navier-Stokes problem considered in theorem 2 is shape differentiable in Hm at Ω0

and satisfies property iii) with n = m. Moreover, the associated pressure p is shape

differentiable in Hm−1 at Ω0 and satisfies iii) with n = m− 1.

Proof: The desired regularity of [s 7→ u(Ωs ◦ Ts)] is a direct consequence of the

regularity of [s 7→ us] , given in the theorem 2, and of the one of [s 7→ Cs], described

in the remark 2. The transported pressure also has analogous regularity: its gradient

being given by ∇ps = ∇(ps◦Ts) = −νAsus−Bs(us, us)+f s, the mapping [s 7→ ∇ps] ∈

C0(I;Hm−1(D;Rp)) ∩ C1(I;Hm−2(D;Rp)). The fields ps (and ps) are defined up to a

constant. We may set, for example,
∫

Ω0

ps ◦ Ts dx = 0, and get with that choice the

regularity [s 7→ ps ◦ Ts] ∈ C0(I;Hm(D;Rp)) ∩ C1(I;Hm−1(D;Rp). �

4.2 Tangential operators

We refer to [9] for the definition of the following usual tangential operators on the

boundary Γ of a C2 open bounded set Ω ⊂ R
3:

• the tangential gradient ∇Γ : H1(Γ;R) → L2(Γ;R3)

• the tangential divergence divΓ : H1(Γ;R3) → L2(Γ;R)

• the Laplace-Beltrami operator ∆Γ : H2(Γ;R) → L2(Γ;R)

These tangential operators are connected to the corresponding operators in Ω: for any

y ∈ C1(Ω;R), v ∈ C1(Ω;R3) and z ∈ C2(Ω;R), we have

∇Γy = ∇y|Γ −
∂y

∂n
n and divΓv = divv|Γ − [Dv]n · n (22)

∆Γz = ∆z|Γ − κ
∂z

∂n
−

∂2z

∂n2
(23)

where κ is the mean curvature of Γ. By density, equations (22) still hold for y ∈

H
3

2
+ε(Ω;R), v ∈ H

3

2
+ε(Ω;R3) and equation (23) for z ∈ H

5

2
+ε(Ω;R), ε > 0.

Many tangential calculus formulas are shown easily with the use of the equations

(22) to (23) for smooth functions and then extended by density. In particular, we will

need the identity

divΓ(yv) = y divΓv +∇Γy · v (24)
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which is true for any y ∈ C1(Ω;R) and v ∈ H
3

2
+ε(Ω;R3).

Proposition 5 (Integration by part on Γ) For all (y, v) ∈ H1(Γ;R) ×H1(Γ;R3)

we have
∫

Γ

∇Γy · v dΓ = −

∫

Γ

y divΓv dΓ +

∫

Γ

κy(v · n)dΓ (25)

Lemma 2 Assume that u ∈ H1
0 (Ω;R

3) ∩H2(Ω;R3). Then, we have

Du = [Du]nn∗ on Γ (26)

Moreover, div u = 0 in Ω (that is, u ∈ V 2(Ω)) implies that

[Du]n · n = 0 and [Du]∗n = 0 on Γ (27)

Proof: Let y ∈ H1
0 (Ω;R) ∩ H2(Ω;R). As y|Γ = 0, ∇Γy = 0 and the equation (22)

leads to ∇y|Γ = ∂y
∂n
n. This result, used for y = ui, 1 ≤ i ≤ 3 proves the first part of

the lemma. The second part is proved as follows: we use the decomposition (22) on

the boundary. As u|Γ = 0, divΓ u = 0 and we conclude that [Du]n · n = 0 on Γ. As

[Du] = [Du]nn∗, [Du]∗ = nn∗[Du]∗ and [Du]∗n = n(n∗[Du]∗n) = n(n∗[Du]n) = 0. �

4.3 The boundary shape derivative

We may now define the boundary shape derivative of a mapping Ω 7→ y(Ω) which

is shape differentiable in Hm, m ≥ 1 (resp. in Cm, m ≥ 0): it is the element of

Hm− 1

2 (Γ;R) (resp. of Cm(Γ;R)), defined by

y′Γ = ẏ|Γ −∇Γy · V (0) (28)

Obviously, using the equations (20) and (22), we have also

y′Γ = y′|Γ +
∂y

∂n
(V (0) · n) (29)

As the material derivative and tangential gradient which appear in formula (28) only

depends on the values of y on the boundary Γ of Ω, we may more generally define the

boundary shape derivative of a mapping Γ 7→ y(Γ) such that there is an extension of

y in Hm(Ω;R) (resp. Cm(Ω;R)) which is shape differentiable.
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This is the way the boundary shape derivative of n may be defined (via a shape

differentiable C2 extension of n in Ω) and we have (see [2])

n′
Γ = −∇Γ(V (0) · n) (30)

For two mappings y and z respectively shape differentiable in H1 and in C1, the

product is shape differentiable in H1 and its boundary shape derivative is given by

(yz)′Γ = (y)′Γz + y(z)′Γ (31)

Proposition 6 Assume that y is shape differentiable in H1. Then

∂

∂s

(
∫

Γs

y(Γs) dΓ

)

∣

∣

∣s=0 =

∫

Γ

y′Γ dΓ +

∫

Γ

κy(V (0) · n) dΓ (32)

4.4 PDE satisfied by u′. Adjoint Equation.

The assumption A2 implies that the linearized Navier-Stokes problem with a right-

hand side in H−1(Ω0;R
3) and homogeneous Dirichlet boundary condition has a unique

solution u ∈ V 1(Ω0). The operator L : V 1(Ω0) → W−1(Ω0) involved in abstract

formulation L(u) = π(g) of this equation being an isomorphism, the adjoint op-

erator L⋆ : V 1(Ω0) → W−1(Ω0) is also an isomorphism (we made the identifica-

tion W−1(Ω0) ≃ V 1(Ω0)
′). The PDE form of the adjoint equation L⋆(η) = π(h)

is −ν∆η + [Du]∗η − [Dη]u + ∇ζ = h for η ∈ V 1(Ω0) and h ∈ H−1(Ω0;R
3). The

well-posedness of the two problems

1)















−ν∆v + [Du]v + [Dv]u+∇q = 0

div v = 0

v|Γ = h

2)















−ν∆η + [Du]∗η − [Dη]u+∇ζ = 0

div η = 0

η|Γ = h

(33)

for g ∈ H−1(Ω0;R
3), h ∈ H1/2(Γ;R3) follows directly from the existence of g ∈ V 1(Ω0)

such that g|Γ = h if h satisfies the compatibility condition
∫

Γ

h · n dΓ = 0 (34)

(remember that Ω0 is connected). Moreover, for both equations, and from the regular-

ity of u implied by A2, the solutions v and η corresponding to a boundary condition

h ∈ H3/2(Γ;R) are in H2(Ω0;R).
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The problems (33.1) and (33.2) are used intensively in the calculations of shape

derivatives because of the following result:

Proposition 7 The couple (u′, p′) is the only solution (v, q) of the linearized Navier-

Stokes equation at u (33.1) with the boundary condition v|Γ = −[Du]n(V (0) · n).

Proof: First we notice that [Du]n(V (0) ·n) ·n being zero on the boundary (see (27)),

the compatibility condition (34) is satisfied. Moreover, for any ϕ ∈ D(Ω0;R
3), for

any |s| being small enough, ϕ ∈ D(Ωs;R
3) and any solution us of the Navier-Stokes

equation in Ωs satisfies
∫

Ωs

(−ν∆us + [Dus]us +∇ps − f) · ϕdx =

∫

D

(−ν∆Us + [DUs]Us +∇Ps − f) · ϕdx = 0

where [s 7→ Us] ∈ C1(I;H2(D;R3)) and [s 7→ Ps] ∈ C1(I;H1(D;R)) are the extensions

considered in the equation (21). The differentiation of this equation with respect to s

gives
∫

D

(−ν∆U ′ + [DU ′]U + [DU ]U ′ +∇P ′) · ϕdx = 0

which implies that u′ and p′ are solutions of (33.1) . The boundary condition is proved

as follows: as u|Γ = 0, for any ϕ ∈ C∞(D;R3),
∫

Γs

u · ϕdΓ = 0

using equation (32), we differentiate this equation for s = 0. As (u · ϕ)′Γ = u′
Γ · ϕ and

u′
Γ = u′|Γ + [Du]n(V (0) · n), we obtain

∫

Γ

(u′ + [Du]n(V (0) · n)) · ϕdΓ = 0

which implies that u′|Γ = −[Du]n(V (0) · n). �

The calculation of the shape derivative of the functional considered in the next

section also requires the following equations, given for divergence-free fields v and η

in H2(Ω;R3) and u ∈ V 1(Ω) by the repeated use of Green’s formula.
∫

Ω

−ν∆η · v dx =

∫

Ω

η · (−ν∆v) dx+ ν

∫

Γ

([Dv]n · η − [Dη]n · v) dΓ (35)

∫

Γ

[Du]∗η · v dx =

∫

Ω

η · [Du]v dx and

∫

Ω

−[Dη]u · v =

∫

Ω

η · [Dv]u dx (36)

∫

Ω

∇ζ · v dx =

∫

Γ

ζ(v · n) dΓ and

∫

Ω

η · ∇q dx =

∫

Γ

(η · n)q dΓ (37)
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5 Shape derivative of sharp functionals

Geometrical Setting: In this section, the boundary Γ of Ω is the union of two

disjoint 2−dimensional submanifolds Γα and Γβ. Let F and M be respectively the

resultant of the forces and the moment of the forces exerted by the fluid on a piece

Γα. The vectors F and M are given by

F =

∫

Γα

(−σ(u)n+ pn) dΓ and M =

∫

Γα

x× (−σ(u)n+ pn) dΓ (38)

with σ(u) = ν([Du]∗ + [Du]). Our aim in this section is to prove that F (Ω) and

M(Ω) are shape differentiable functionals and to find the expression of their Eulerian

derivative. We recall (see [9]) that a functional J(Ω) is shape differentiable at Ω0 if

for any V regular enough, s 7→ J(Ωs) is differentiable at s = 0 and this derivative (the

Eulerian derivative) dJ(Ω0;V ) is linear continuous in V .

Theorem 4 Under the hypotheses A1 with m=2 and A2, both F and M are shape

differentiable at Ω0. For a given e ∈ R
3, let η be the solution of the adjoint equation

(33.2) with the boundary conditions η|Γα
= e and η|Γβ

= 0. (resp. η|Γα
= e × x and

η|Γβ
= 0).

Then the Eulerian derivative of Fe = F · e (resp. Me = M · e) is given by:

dFe(Ω0;V ) =

∫

Γα

(f · e)(V (0) · n) dΓ + ν

∫

Γ

[Dη]n · [Du]n(V (0) · n) dΓ (39)

resp. dMe(Ω0;V ) =

∫

Γα

(x× f + ν[Du]n× n) · e (V (0) · n) dΓ

+ν

∫

Γ

[Dη]n · [Du]n(V (0) · n) dΓ (40)

Let e be a given vector of R3 and r ∈ C∞(D;R) a function such that r = 1 in a

neighbourghood of Γα and r = 0 in a neighbourghood of Γβ = Γ−Γα. We set gF = re

and gM = re× x. The values Fe and Me may be studied as special cases of the family

of functionals J(Ω) = J1(Ω)− J2(Ω) where

J1(Ω) =

∫

Γ

pn · g dΓ, J2(u) =

∫

Γ

σ(u)n · g dΓ

and g satisfies div g = 0 in a neighbourghood of Γ and the compatibility condition (34).

It is obvious that with g = gF , J(Ω) = Fe. Moreover, as (x × (−σ(u)n + pn)) · re =
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(−σ(u)n+pn) · (re×x), J(Ω) = Me with g = gM . The two additional properties come

easily from the equations div e = 0 and div (e× x) = rot(e) · x− rot(x) · e = 0.

Shape Derivative of J1(Ω): using the shape differentiability of p, g and n, and the

proposition 6, we obtain

dJ1(Ω0;V ) =

∫

Γ

p′Γ(g · n) dΓ +

∫

Γ

p(g · n)′Γ dΓ +

∫

Γ

κ(pn · g)(V (0) · n) dΓ

As p′Γ = p′|Γ+
∂p
∂n
(V (0) ·n) (see equation (29)), we have dJ1(Ω;V ) = A+

∫

Γ

p′(g ·n) dΓ

with

A =

∫

Γ

(

∂p

∂n
(g · n)(V (0) · n) + p(g · n)′Γ + κ(pn · g)(V (0) · n)

)

dΓ

• As g′Γ = g′|Γ+[Dg]n(V (0) ·n) (straightforward adaptation of (29) to the vectorial

case) and n′
Γ = −∇Γ(V (0) · n) (equation (30)), we have (g · n)′Γ = g′Γ · n + g · n′

Γ =

([Dg]n · n)(V (0) · n)− g · ∇Γ(V (0) · n). Using the integration by parts formula on the

boundary (25), we get

−

∫

Γ

pg · ∇Γ(V (0) · n) dΓ =

∫

Γ

divΓ(pg)(V (0) · n) dΓ−

∫

Γ

κ(pn · g)(V (0) · n) dΓ

and finally, since div g = 0 on Γ,

A =

∫

Γ

(

∂p

∂n
(g · n) + p[Dg]n · n+ divΓ(pg)

)

(V (0) · n) dΓ

=

∫

Γ

div (pg)(V (0) · n) dΓ =

∫

Γ

∇p · g(V (0) · n) dΓ

• We set h = (g · n)n. The compatibility condition (34) being satisfied, we may

introduce η1, the unique solution of the adjoint equation (33.2). We have then
∫

Γ

p′n · g dΓ =

∫

Γ

(p′η1) · n dΓ

=

∫

Ω

div (p′η1) dx

=

∫

Ω

∇p′ · η1 dx (as div η1 = 0)

=

∫

Ω

(ν∆u′ − [Du]u′ − [Du′]u) · η1 dx

Using equations (35) and (36) we come to
∫

Γ

p′n · g dΓ =

∫

Ω

(ν∆η1 − [Du]∗η1 + [Dη1]u) · u
′ dx+ ν

∫

Γ

([Du′]n · η1 − [Dη1]n · u′) dΓ
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As ν∆η1 − [Du]∗η1 + [Dη1]u = ∇ζ1, equation (37) yields
∫

Ω

(ν∆η1 − [Du]∗η1 + [Dη1]u) · u
′ dx =

∫

Ω

∇ζ1 · u
′ dx =

∫

Γ

ζ1(u
′ · n) dΓ = 0

due to u′|Γ = −[Du]n(V (0) · n) and [Du]n · n = 0 (see Lemma 2). On the other hand,

[Du′]n · η1 = (g · n)[Du′]n · n and on the boundary, 0 = div u′ = divΓ u
′ + [Du′]n · n.

Accordingly, we have by integration by parts on Γ and because u′ = u′
τ

ν

∫

Γ

[Du′]n · η1 dΓ = −ν

∫

Γ

(g · n) divΓ u
′ dΓ = ν

∫

Γ

∇Γ(g · n) · u
′ dΓ (41)

• Finally, since u′|Γ = −[Du]n(V (0) · n), we end up with

dJ1(Ω0;V ) =

∫

Γ

(∇p · g + ν([Dη1]n−∇Γ(g · n)) · [Du]n) (V (0) · n) dΓ (42)

Shape Derivative of J2(Ω): we notice that lemma 2 implies that σ(u)n = ν[Du]n.

The shape differentiability of n, g and u (in H2 for the latter) implies that

dJ2(Ω0;V ) =

∫

Γ

ν([Du]n · g)′Γ dΓ +

∫

Γ

κν([Du]n · g)(V (0) · n) dΓ

As ([Du]n·g)′Γ = [Du]′Γn·g+[Du]n′
Γ ·g+[Du]n·g′Γ and [Du]′Γ = [Du′]|Γ+[D2u]n(V (0)·n),

we have dJ2(Ω;V ) = B +

∫

Γ

ν[Du′]n · gτ dΓ with gτ = g − (g · n)n and

B =

∫

Γ

ν
(

(g · n)[Du′]n · n+ (n∗[D2u]n · g + [Dg]n · [Du]n+ κ[Du]n · g)(V (0) · n)
)

dΓ

• The first term of B has already been calculated (see equation (41)) . The second

is involved in the decomposition of the Laplace operator on the boundary (23). As

∆Γu = 0 and [Du]u=0 on Γ, νn∗[D2u]n = −νκ[Du]n+∇p− f on Γ. Therefore,

B =

∫

Γ

((∇p− f) · g + ν[Dg]n · [Du]n− ν∇Γ(g · n)) (V (0) · n) dΓ

• We set h = gτ . The compatibility condition (34) being satisfied, we may introduce

η2, the unique solution of the adjoint equation (33.2). The equation (35) yields

ν

∫

Γ

[Du′]n · gτ dΓ =

∫

Ω

(−ν∆η2 · u
′ + η2 · (ν∆u′)) dx+ ν

∫

Γ

[Dη2]n · u′ dΓ

Using −ν∆η2 = −[Du]∗η2 + [Dη2]u−∇ζ and ν∆u′ = [Du]u′ + [Du′]u+∇p′, and then

the equations (36) to (37), we come to

ν

∫

Γ

[Du′]n · gτ dΓ =

∫

Γ

ζ(u′ · n) dΓ +

∫

Γ

(η2 · n)p
′ dΓ + ν

∫

Γ

[Dη2]n · u′ dΓ
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and the two first terms of the right-hand side vanish.

• We finally have

dJ2(Ω0;V ) =

∫

Γ

((∇p− f) · g + ν[Dg]n · [Du]n− ν∇Γ(g · n)) (V (0) · n) dΓ (43)

Shape Derivative of J(Ω): with the expressions (42) and (43), we come to

dJ(Ω0;V ) =

∫

Γ

(f · g)(V (0) · n) + ν

∫

Γ

[D(η − g)]n · [Du]n(V (0) · n) dΓ (44)

where η = η1 + η2 is the unique solution of the equation (33.2) with the boundary

condition η|Γ = g. This expression easily leads to the formulas (39) and (40) of the

theorem 4 with the choices of g = gF and g = gM .

6 Conclusion

The natural extension of this work is the study of the shape derivative of functionals

that require even more regularity than the one considered in the section 5. For example

for the functionals that characterize the uniformity of the pressure on a given body, the

shape differentiability of p in H1 (which corresponds to m = 2) is not sufficient. Notice

also that with a slight adaptation, the case of non-homogeneous boundary conditions,

which appear for example in the study of a body which moves in a fluid with a constant

velocity, also fits in the preceding framework.
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